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A General Scenario of ML: Metric-Measure Space
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> Xy, = (X,d,p): A metric-measure space, where x € X' is a sample in the space.
» d: A distance metric of samples (e.g., Euclidean distance).
» P: A space of (probability) measures defined on X'.

» 1 € P: a probability measure on X.
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> Xy, = (X,d,u): A metric-measure space, where x € X' is a sample in the space.
» Most ML tasks are constructing/reconstructing mm-spaces from observed data:
» Data representation: Find a map f: Xy, — Zq .
» Metric learning: Learn a (pseudo-)metric d.
» Generative modeling: Estimate p by a model g for X.
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Distribution Comparison: The Key Machine Learning Task
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» Data Clustering, Domain Adaptation, Generative Modeling, Evaluation of

Generative Model, ...
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Origin: The Monge-form of The Optimal Transport Problem

A Transport Map
K T:X+—X

P IR
v =Tyup 7

>

' (X,d)
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.
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Origin: The I\/Ionge form of The Optimal Transport Problem

A Transport Map
K T:X+—X
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>

(X,d)
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.
» Tyup: The push-forward of i, for S C X

Tyu(S) = p({z : T(x) € S}) = w(T7H(S)). (1)
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Origin: The Monge-form of The Optimal Transport Problem

e A Transport Map
~ K T:X— X

/__\
v =Tyup 7

(X, d)

Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

» Tyup: The push-forward of i, for S C X
Tynu(S) = p({z : T(x) € §}) = w(T~H(S)).

» Find a measure-preserving map 7' to minimize the cost of moving samples:

. » 1/p
Ve )=t | @ T@) an) "
——

measure preserving

cost per sample

(1)
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From Transport Map to Transport Plan: The Kantorovich-form of OT

Note that, the minimizer of (2) may not exist!
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> I, y) = {7 > 0| [, 7(z,y)dz = 7(y), [, 7(z,y)dy = p(z)} include all joint
distributions taking 1 and v as marginals.
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From Transport Map to Transport Plan: The Kantorovich-form of OT

Note that, the minimizer of (2) may not exist!

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939

> I, y) = {7 > 0| [, 7(z,y)dz = 7(y), [, 7(z,y)dy = p(z)} include all joint
distributions taking 1 and v as marginals.

» 7 € II(u,y) is called transport plan or coupling.

» Find an optimal transport plan to minimize the expected cost.

1
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From Transport Map to Transport Plan: The Kantorovich-form of OT
Relations to the Monge-form OT:

» Applying the transport plan 7, we allow each sample x ~ i to be split and
mapped to multiple locations.

» If the optimal transport map 1™ exists, it determines a transport plan 7, so

Wy, v) < My(,7). (4)
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Relations to the Monge-form OT:

» Applying the transport plan 7, we allow each sample x ~ i to be split and
mapped to multiple locations.

» If the optimal transport map 1™ exists, it determines a transport plan 7, so

Wy, v) < My(,7). (4)

When d(z,y) = ||z — y||,, W, is called p-Wasserstein distance.
» When p =1, d(x,y) = | — y|, Wi is the Earth Mover Distance (EMD).
» When p =2, u=N(z1,%1) and v = N (22, X2),

Wi, 7) = (a1 — w213 + tr(1) + tr(a) — 2er((T)/ 252222 (5)

W, is a valid metric for probability measures.
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Empirical OT Problem Defined on Samples

Given X = {zn M ~p, Y = {yn )0 ~v, pe AN"Land v € AM-L,

1/p
W(X Y) <TeIIITl(IE~y Zm_ Zn . P (T, Yn) mn)
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Empirical OT Problem Defined on Samples
L

Given X = {zn M ~p, Y = {yn )0 ~v, pe AN"Land v € AM-L,

1/p
W (X Y (TGIIIII(IE'Y Z'm_ Zn 1 xm;yn tmn) (6)
1/p

i 1/p
(TEIIIII(IE;}')< ’ >) Terlzll(lﬁ ~) (z, y)NT[ (Q’J, y)] )

where D = [dp(.’bm,yn)], T = [tmn]' H(#’v‘Y) = {T > 0|T1M = “7TT1N = 7}
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Wasserstein Barycenters
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» Denote Py, as the space of all probability measures in the metric space Xj.
» (Px,, W)y) becomes a metric space of probability measures.
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Wasserstein Barycenters
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» Denote Py, as the space of all probability measures in the metric space &y
(Px,, W,) becomes a metric space of probability measures

> Given a set of probability measures {ux}X | C Px,, we can define the
p-Wasserstein barycenter [Agueh et al, 2021] as

pimarg min S W), )
rePx,

[Agueh et al, 2021] Agueh, M. and Carlier, G., Barycenters in the Wasserstein space. SIAM Journal on

Mathematical Analysis, 2011.
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Advantages of Optimal Transport

A valid metric for probability measures
» Apply to distribution comparison and fitting

P> \Wasserstein barycenter can achieve multi-distribution averaging and fusion
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Advantages of Optimal Transport

A valid metric for probability measures

» Apply to distribution comparison and fitting

P> \Wasserstein barycenter can achieve multi-distribution averaging and fusion
Consistent sample-based estimation

> With the increase of samples, ﬁ/\p — W
The OT plan/matrix indicates the coherency of sample pairs

» Apply to point cloud matching and registration
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Computational Bottlenecks of Optimal Transport and Possible Solutions

» A constrained linear programming problem:

—

P(X,Y)= min (D,T).
Wy (X.Y) Te%l(lﬂ,7>< ,T) (8)

Apply the Simplex algorithm leads to O(N?) complexity.
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» A constrained linear programming problem:

—

WP(X)Y) = i D, T).
5 (X,Y) Te%l(lﬂ,7>< ,T) (8)
Apply the Simplex algorithm leads to O(N?) complexity.

» Solution 1: Develop efficient optimization algorithms and acceleration methods
» Sinkhorn-scaling
» Proximal point
» Bregman ADMM
» Solution 2: Apply structured/stochastic OT plan
» Stochastic optimization
» Sinkhorn-scaling with importance sparsification
» Solution 3: Explore efficient surrogates of OT distance

> Sliced Wasserstein (SW) distance
» Hilbert curve projection (HCP) distance
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Sinkhorn-scaling Algorithm for Entropic OT

Motivation and Principle:

» Improve the smoothness of the OT problem
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Sinkhorn Distance (Entropic OT Problem) [Cuturi, NeurlPS 2013]
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Sinkhorn-scaling Algorithm for Entropic OT

Motivation and Principle:
» Improve the smoothness of the OT problem
Sinkhorn Distance (Entropic OT Problem) [Cuturi, NeurlPS 2013]

o~

Wpe:= min (D, T)—eH(T),
Entropy (9)

H(T) = —(logT - 1,T).

Sinkhorn-Knopp algorithm:
1. Set a kernel matrix ® = exp(—Q) and a dual variable a = pu.
2. Sinkhorn iteration: Repeat b= =1 o and a = %5 until convergence.
3. T*=® @ (ab').

[Cuturi, NeurlPS 2013] Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transport.
NeurlPS, 2013.
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Proximal Point Algorithm: A Variant of Sinkhorn-scaling
Motivation and Principle:
» The (explicit) entropic regularizer might be unnecessary
> Solve the “exact” OT problem via a Sinkhorn-like algorithm
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previous approximation [Xie, et al., UAI 2020]
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Motivation and Principle:
» The (explicit) entropic regularizer might be unnecessary
> Solve the “exact” OT problem via a Sinkhorn-like algorithm
Proximal point algorithm:
1. Initialize T = pu 7.
2. In the m-th iteration, consider the penalty between the optimal transport and its
previous approximation [Xie, et al., UAI 2020]
min (D, T) 4 e KL(T|T"™)
| ——

TEeT(p,Y)
Proximal term

= min (D —elogT™ T)— eH(T).

Tell(p,y) ~———~——
elog ®(m)

3. Apply the Sinkhorn iterations to obtain 70"+ = &™) @ (a(™) (b(™)T).
[Xie, et al., UAI 2020] Xie, Y., Wang, X., Wang, R., & Zha, H. A fast proximal point method for
computing exact Wasserstein distance. UAI 2020.
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Proximal Point Algorithm: A Variant of Sinkhorn-scaling
The connections between the Sinkhorn-scaling and the proximal point:
> In the m-th iteration, denote a(™ (b(™)T as A(™):

$m) _ exp(—D —elog T(m—1)> _ exp(—%) @ T(m=1)

€
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The connections between the Sinkhorn-scaling and the proximal point:
> In the m-th iteration, denote a(™ (b(™)T as A(™):

Fm) — exp(—D — eloeg T(m—1)> _ exp(-%) @ T(m=1)
= exp(—B) &(m-1) o Alm=1)

€
D D — ~log T(Mm—2)
= eXp(—?) @CX}’)(— 7108 ) ® A(m—l)

€
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Proximal Point Algorithm: A Variant of Sinkhorn-scaling
The connections between the Sinkhorn-scaling and the proximal point:
> In the m-th iteration, denote a(™ (b(™)T as A(™):

&™) = exp

D - eloeg T(m_1)> _ exp(—%) o Tm=1)

) ® ®m=1 o Alm—1)

D D —~1 T(m72)
_7) @CXI’)(* 7 log ) o) A(m—l)

€

Il
o)
[}

ol

(11)

~"'D) o (07 AY).
A

> A,, determines the initial point while the problem corresponding to the iteration
steps is convex.

» So proximal point algorithm implements the Sinkhorn-scaling with a decaying
€
m’

weight
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Bregman ADMM: Solve OT without Sinkhorn
Motivation and Principle:
» The Sinkhorn-based algorithm often suffers from numerical instability issue.

» The Sinkhorn-based algorithm is restricted to the OT problem with entropy or
KLD regularization.
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Motivation and Principle:
» The Sinkhorn-based algorithm often suffers from numerical instability issue.

» The Sinkhorn-based algorithm is restricted to the OT problem with entropy or
KLD regularization.

» Decouple the doubly-stochastic constraint to two one-side constraints can simplify
the problem.

Reformulation of OT problem [Wang, et al. NeurlPS 2014]:
» Introduce an auxiliary variable S and

mingery(p~) (D, T) € minger,,.) seri(.),r=s(D,T)

Bregman Div.

. (12)
& minper(y,),sen(q),z (D, T) + (2, T — S) + eBy(T, S)

Augmented Lagrangian

[Wang, et al. NeurlPS 2014] Wang, H., & Banerjee, A. Bregman alternating direction method of
multipliers. NeurlPS 2014.
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Bregman ADMM: Solve OT without Sinkhorn

Bregman Divergence: Given a differentiable and strictly convex function ¢,

By(z,y) = ¢(x) — d(y) — (Vo(y),z — ). (13)
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Bregman Divergence: Given a differentiable and strictly convex function ¢,

By(z,y) = ¢(x) — d(y) — (Vo(y),z — ). (13)

Commonly-used Bregman divergence:

> ¢(z) = ;2% Euclidean distance By(z,y) = 3/lz — y||%.

> ¢(x) = zlogz — x: KL-divergence By(z,y) = KL(z(|y) = zlog{ —z + .
Naturally, the Bregman ADMM is also applicable for various regularized OT:

» Considering the above Bregman divergence leads to the OT problems with
entropic or quadratic regularizers.

The Bregman ADMM algorithm solves the OT problems iteratively.
» Each step has a closed form.

» Sublinear convergence rate.
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Bregman ADMM: Solve OT without Sinkhorn
> Initialize Z(© =0, T = SO = y~T.
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Bregman ADMM: Solve OT without Sinkhorn

> Initialize Z(© =0, T = SO = y~T.
> Repeat the following steps till convergence:
1. Update primal variable T':

T+ — arg mingery(p,.)

(D.T)+ (2™, T
elog S™) —

) + eKL(T|| S™)

First-order optimality, (1)

exp (

Lt T J ) = diag(p)Softmax, (

— zm)
—)

elog 8™ — D — Z(™

€

).
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Bregman ADMM: Solve OT without Sinkhorn

> Initialize Z(© =0, T = SO = y~T.
> Repeat the following steps till convergence:
1. Update primal variable T':

First-order optimality T(erl) _ eXp(GIOg Sm) _ p — zm) )
€
elogS™ — D — Z(m))

€

Tm+1) — arg mingeyy(

(14)

Project to II(p, -)
=

T+ — diag(p)Softmax, (

2. Update auxiliary variable S
S+ = arg mingen(. 4) — (2™, 8) + eKL(S| T D)
elogT+D) 4 Zzm)\
)dlag('y).

€

= Softmaxc(
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Bregman ADMM: Solve OT without Sinkhorn

> Initialize Z(© =0, T = SO = y~T.
> Repeat the following steps till convergence:
1. Update primal variable T':

First-order optimality T(erl) _ eXp(GlOg Sm) _p— Z(m))

Tm+1) — arg mingeyy(

. (14)
LProject to s ), p(m+1) — diag(p)Softmax, (elog i p 2z )
2. Update auxiliary variable S
S+ — arg mingery(. ) —(Z™) | 8) + eKL(S|T™+D)
= Softmaxc(ElOg T + 2 )diag('y). (1)
€
3.
Zm+D) —zm) | e(pm+1) _ gim+1y, (16)
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Impose Structures on OT Plans: Low-rank Optimal Transport
> Low-rank OT plans [Scetbon et al. 2021]: T' = Qdiag ' (g)R" € T1(1, )

min (D, Qdiag'(g)R"),

st.QeRY" Q1, =p, ReRY*" Rl1, =+, (17)
geR,, R"1y=Q 1) =g.
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Impose Structures on OT Plans: Low-rank Optimal Transport
> Low-rank OT plans [Scetbon et al. 2021]: T' = Qdiag ' (g)R" € T1(1, )

min (D, Qdiag'(g)R"),

st.QeRY" Q1, =p, ReRY*" Rl1, =+, (17)
geR, RT1y=Q "1y =g.

» A mirror descent scheme w.r.t. the KL-divergence, leading to the Dykstra’s
Algorithm in each step: In the m-th step:

Q(m+1)a R(m+1)7g(m+1) = arg min KL({Q7R79}H{£1352553})7
Q,R,gef

&= Q" © exp(—en DR™diag™! (™)),
&= R © exp(—e DT Q™ diag ™! (g)),
& = 9" © exp(endiag((Q)TDR™) /(g"™)).

[Scetbon et al. 2021] Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn

factorization, ICML, 2021.
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Impose Structures on OT Plans: Sparse Optimal Transport

> Replace the entropic regularizer to a quadratic regularizer [Blondel et al.
2018]:

€
i D, T)+ —||T|>.
Terﬁl(lﬁ,7>< )+ 5ITNE (19)
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Impose Structures on OT Plans: Sparse Optimal Transport

> Replace the entropic regularizer to a quadratic regularizer [Blondel et al.
2018]:

€
i D, T)+ —||T|>.
TerlrIl(IB,'y)< )+ 5ITNE (19)

» Applying the L-BFGS algorithm to solve the smoothed dual formulation of (19),
the OT plan has a closed-form expression: for T = [t* ],

L .
t:’m = E[am + b:; - dmn]—i—-
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Impose Structures on OT Plans: Sparse Optimal Transport

> Replace the entropic regularizer to a quadratic regularizer [Blondel et al.
2018]:

€
i D, T)+ —||T|>.
Tererl(IB,'y)< )+ 5ITNE (19)

» Applying the L-BFGS algorithm to solve the smoothed dual formulation of (19),
the OT plan has a closed-form expression: for T = [t* ],

1
ton = —lam + by, — dmn]+ (20)
€
» This problem is highly correlated with LASSO, leading to a sparse OT plan.

[Blondel et al. 2018] Blondel, Mathieu, Vivien Seguy, and Antoine Rolet. Smooth and sparse optimal
transport. AISTATS, 2018.
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Impose Structures on OT Plans: Sparse Optimal Transport

» Sample the OT plan randomly via importance sparsification [Li et al. 2023]:
apply the principle of Poisson sampling to sketch the kernel matrix ® = [¢,,,] to
s nonzero elements:

¢m,n H * o .

~ ~ ~ zmn with prob.p),,, = min{1, s

P = [¢mn]; where ¢, = { P p- Pmn { Pmn } (21)
0 otherwise.

SINKHORN | SPAR-SINK

[Li et al. 2023] Li, M., Yu, J., Li, T. and Meng, C., Importance Sparsification for Sinkhorn Algorithm.
JMLR, 2023.
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Impose Structures on OT Plans: Sparse Optimal Transport

» The sampling probability P = [py,,] is determined by the upper bound of D ® T™*:

\/7
myn VHmVn

dmn < €o, t:rm < UmsVn = dmnt:zn < Cov/ HmVn = Pmn = Z (22)
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Impose Structures on OT Plans: Sparse Optimal Transport

» The sampling probability P = [py,,] is determined by the upper bound of D ® T™*:

* * vV HmVn
dmn < ¢, tmn < My Up = dmntmn < CoN UmVn = DPmn = —(22)
o - - Zm n VHmVUn

» Reduce the complexity from O(N?) to O(N log N) when s ~ Nlog N.
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Impose Structures on OT Plans: Sparse Optimal Transport

» The sampling probability P = [py,,] is determined by the upper bound of D ® T™*:

vV HmVn
me VvV HmVn

dmn < ¢, t:nn < Wm,Vn = dmnt:nn < CoN UmVn = DPmn = (22)

» Reduce the complexity from O(N?) to O(N log N) when s ~ Nlog N.

» The approximation error between W), . and W), . is bounded:

N3720¢

|ﬁ\/p,€ - le < ce , where ¢ >0, a € (0.5,1). (23)
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Sliced Wasserstein: A Surrogate of Wasserstein Distance
Motivation: The optimal transport between 1D distributions is relatively easy to solve.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance
Motivation: The optimal transport between 1D distributions is relatively easy to solve.

» When dim(X) =1, W), has a closed form, related to 1D histogram transform
and equalization.

W) = ([ P e ep:) (24)

where F,G : X — [0, 1] are CDF's of y and v.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance
Motivation: The optimal transport between 1D distributions is relatively easy to solve.

» When dim(X) =1, W), has a closed form, related to 1D histogram transform
and equalization.

W) = ([ 1) - @ pas) . (24)

where F,G : X — [0, 1] are CDF's of y and v.
> Given x = {z,}N_ | ~pand y = {y, ), ~ v

— N 1/p
W@, y) = (3 2n = o Fdz) ", (25)
n=1

where o denotes the sorting operation.

Theorem: For one dimensional z; < ... < zy and y; < ... < yy, identity permutation
(0(n) =nforn=1,...,N) leads to the optimal transport between them.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

Sliced-Wasserstein distance [Bonneel et al., 2015]:

» Given two distributions 1 and 7 defined on a metric space (X C R”,dx),
projecting Va € X through a linear projection § € SP~1, i.e., Ry(z) = (z,0),
leads to

» A 1D metric space (Rg(X),dRg,x))-
» The one-dimensional distributions after projection Rgxp and Rgx7y.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

Sliced-Wasserstein distance [Bonneel et al., 2015]:

» Given two distributions 1 and 7 defined on a metric space (X C R”,dx),
projecting Va € X through a linear projection § € SP~1, i.e., Ry(z) = (z,0),
leads to

» A 1D metric space (Rg(X),dRg,x))-
» The one-dimensional distributions after projection Rgxp and Rgx7y.

SWip(,7) = Eonp gy [Wp(Rogp, Rogy)] =/9 < Wp(Rogn, Royy)dp(6)(26)
csp-

[Bonneel et al., 2015] Bonneel, N., Rabin, J., Peyré, G. and Pfister, H., Sliced and radon wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 2015.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Practical implementation:

» Samples X = {z,})_; ~pand Y = {y, })_, ~ 7 are provided.
» Finite number of projections are sampled based on a distribution {QZ}le ~ pgD-1.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Practical implementation:
» Samples X = {z,})_; ~pand Y = {y, })_, ~ 7 are provided.
» Finite number of projections are sampled based on a distribution {91}le1 ~ pgD-1.

» Sample-based sliced Wasserstein distance:

L N 1/p
ST >3 > 10— 0] P
SWy(X,Y)=— min ! T — 0] Yn|Ptimn
L =1 TEH(%IN,%].N) m,n=1
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Practical implementation:

» Samples X = {z,})_; ~pand Y = {y, })_, ~ 7 are provided.
» Finite number of projections are sampled based on a distribution {91}le1 ~ pgD-1.

» Sample-based sliced Wasserstein distance:

1/p
L
— 1
SW,(X,Y)=— min 10" 2 — 6 Y|Pl
P L; TGH(NlN’NlN)m;I " "
1 (1 Al v
- . T T 27
—LIZ}(NU%%%;M o =6 ym)ip) (21)

2=

|
M=

n=1

N 1/p
( yel—rxcr*(n) - el—ryo*(n)|p>

=1
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Extensions of Sliced Wasserstein

Max-sliced Wasserstein (MSW) [Deshpande et al., 2019]: Instead of randomly
sampling projections, learn the optimal one in an adversarial way.

> Given two distributions ; and + defined on a metric space (X C R”, dy), find the
optimal projection that maximizes the 1D Wasserstein distance:

MSWy(p,7) := max Wy(Rogt, Roy) (28)
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Extensions of Sliced Wasserstein

Max-sliced Wasserstein (MSW) [Deshpande et al., 2019]: Instead of randomly
sampling projections, learn the optimal one in an adversarial way.

> Given two distributions ; and + defined on a metric space (X C R”, dy), find the
optimal projection that maximizes the 1D Wasserstein distance:

MSWy(p,7) := max Wy(Rogt, Roy) (28)

> Given samples X = {2} ~pand Y = {y,} V| ~~,

/\ 1/p
MSW,(X,Y) = ggg%}il<ar£’}7rzl\r Z 1607 20 — 0y !”) (29)

[Deshpande et al., 2019] Deshpande, 1., Hu, Y.T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S., Zhao,
Z., Forsyth, D. and Schwing, A.G., Max-sliced wasserstein distance and its use for gans. CVPR, 2019.
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Extensions of Sliced Wasserstein

» M SW, is strongly equivalence to W), [Paty et al. 2019, Bayraktar et al. 2021]:
forp=1,2,

30 < 1 < ca, AMSW, < W, < caMSW,,. (30)

» In other words, in many situations, using M SW,, should be comparable to using
W, concerning distance metric.

[Paty et al. 2019] Paty, F.P. and Cuturi, M., Subspace robust Wasserstein distances. ICML, 2019.
[Bayraktar et al. 2021] Bayraktar, E. and Guo, G., Strong equivalence between metrics of Wasserstein
type. 2021.
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Extensions of Sliced Wasserstein

Generalized sliced Wasserstein (GSW) [Kolouri, et al., 2019]: Replacing the linear
projections to nonlinear ones (by generalized Radon transformation)

» Given two distributions y and v defined on a metric space (X C RP, dy), we have

GSWy(p,7y) == Wy (Foupt, Foury)dp(0),
FpeQ (31)
MGSWp(p, ) = max Wy (Fo o, Foyy)

where Fy € (1 is the generalized Radon transformation and 6 is rotation angle.
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Extensions of Sliced Wasserstein

Generalized sliced Wasserstein (GSW) [Kolouri, et al., 2019]: Replacing the linear
projections to nonlinear ones (by generalized Radon transformation)

» Given two distributions y and v defined on a metric space (X C RP, dy), we have

GSWy(p,7y) == Wy (Foupt, Foury)dp(0),
FpeQ (31)
MGSWp(p, ) = max Wy (Fo o, Foyy)

where Fy € (1 is the generalized Radon transformation and 6 is rotation angle.

P Alternating optimization is applied to compute these variants.

[Kolouri, et al., 2019] Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., & Rohde, G. Generalized
sliced wasserstein distances. NeurlPS, 2019.
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Hilbert Curve Projection Distance: Locality-preserving Projection + OT

Motivation: Linear projections used in SW often break the locality-preserving
property.
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Hilbert Curve Projection Distance: Locality-preserving Projection + OT

Motivation: Linear projections used in SW often break the locality-preserving
property.

Curve Proj.

AAAA

Hilbert curve, a special kind of space-filling curve, provides us a potential projection
method that has locality-preserving property.

Linear l Hilbert
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Hilbert Curve Projection Distance: Locality-preserving Projection + OT

> A K-order Hilbert curve Hy:
> Partition the [0, 1] and D-dimensional unit hyper-cube [0,1]” into (25)P parts.
» Construct a bijection between them.

1 order Hilbert Curve 1o 2 order Hilbert Curve 1o 3 order Hilbert Curve

10

05 05
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Hilbert Curve Projection Distance: Locality-preserving Projection + OT

> A K-order Hilbert curve Hy:
> Partition the [0, 1] and D-dimensional unit hyper-cube [0,1]” into (25)P parts.
» Construct a bijection between them.

1 order Hilbert Curve 1o 2 order Hilbert Curve 1o 3 order Hilbert Curve

10

05 05

> H(z) = limg o Hg(z) is a surjection H : [0,1] — [0, 1]¢ (space-filing curve).
> H covers the entire hyper-cube and enjoys the locality-preserving property:

1H (2) = H(y)l2 < 2vVd+ 3|z — y|'/*, Va,y € [0,1]. (32)
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Hilbert Curve Projection Distance: Locality-preserving Projection + OT

» Given a probability measure p defined on a hyper-cube 2,
> The Hilbert curve: H, : [0,1] — Q,
» The CDF along H,, denoted as ¢ : [0,1] — [0,1]:

gu(t) = infco n( Hu([0,5)) ) 33

A Borel set in 2,

32/122



Hilbert Curve Projection Distance: Locality-preserving Projection + OT

» Given a probability measure p defined on a hyper-cube 2,
> The Hilbert curve: H, : [0,1] — Q,
» The CDF along H,, denoted as ¢ : [0,1] — [0,1]:

gu(®) = infociog i Hu(l05) ).

A Borel set in 2,

» The Hilbert Curve Projection (HCP) distance [Li, et al. 2022] is
1
Her) = ([ 1) - H~,<g;1<t>>u,’jdt)"

1/
Compare to 1D Wy, (u, ) / |F1 *1(z)|pdz) :

(34)
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Hilbert Curve Projection Distance: Locality-preserving Projection + OT

» Given a probability measure p defined on a hyper-cube 2,
> The Hilbert curve: H, : [0,1] — Q,
» The CDF along H,, denoted as ¢ : [0,1] — [0,1]:

gu(®) = infociog i Hu(l05) ).

A Borel set in 2,

» The Hilbert Curve Projection (HCP) distance [Li, et al. 2022] is
1
Her = ([ 1 H~,/<g*1<t>>u,’jdt)"

1/
Compare to 1D Wy, (u, ) / |F1 ’1(z)|pdz) :

» A valid metric for probability measures 4+ An upper bound of W:

HCPy(un,p) — 0, and  Wy(u,v) < HCPy(p, 7).

(33)

(34)

(35)

[Li et al, 2022] Li, T., Meng, C., Xu, H. and Yu, J., Hilbert curve projection distance for distribution

comparison. arXiv:2205.15059, 2022.
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Hilbert Curve Projection Distance: Locality-preserving Projection + OT

2) 2.0 - b c d)2
@ —F ©) © @
) N Y -
1.5 AA A A A AA A
T AP UNIR N
10 . cl,—JA |—c—1 C1y Ci6y L
A
NEEL]
0.5 : > A4 uA 4 4 A 4
A FALAARARRARRRRRSY [ |
fl'{\‘l I_C_:s cix Clex =
0.0 0.5 1.0 15 2.0

1. Project D-dimensional samples along their K-order Hilbert curves, and determine
the OT plan accordingly. (O((N + M)DK))
2. Determine the OT plan via sorting the projected samples.

(O(Nlog N + M log M))
3. Compute the HCP distance by the raw samples and the OT plan.
HOP,( (Z [ES—. rgt:;m) (36)
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Summary
» W, and its variants (e.g., SWy, MSW,, HCP,, and so on) provide valid metrics
for probability measures.
» MSW, is strongly equivalent to W,

» SW, is weakly equivalent to W,
» HCP, is an upper bound of W,
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» SW, is weakly equivalent to W,
» HCP, is an upper bound of W,
» Efficient approximation methods (Sinkhorn, Proximal Point, Bregman ADMM,
etc.) are proposed with the help of various smoothness regularizers.

> Sublinear convergence rate (i.e., O(1/€?) steps to achieve e-approximation)
> Reduce the complexity to O(N?)
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> The time complexity of Low-rank OT is O(N?r) but it reduces memory cost
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Summary
» W, and its variants (e.g., SWy, MSW,, HCP,, and so on) provide valid metrics
for probability measures.
» MSW, is strongly equivalent to W),
» SW, is weakly equivalent to W,
» HCP, is an upper bound of W,
» Efficient approximation methods (Sinkhorn, Proximal Point, Bregman ADMM,
etc.) are proposed with the help of various smoothness regularizers.
> Sublinear convergence rate (i.e., O(1/€?) steps to achieve e-approximation)
> Reduce the complexity to O(N?)
» Structured OT plans (Low-rank and/or sparse OT plans) often lead to further
accelerations.
> The time complexity of Low-rank OT is O(N?r) but it reduces memory cost
significantly.
> Apply importance sparsification reduces the complexity to O(N log N)
P Potential applications:
» For distance-centric applications: design loss functions.

» For OT plan-centric applications: solve matching problems and design models.
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5-min break for Q & A



Outline

Part 1 Introduction to Computational Optimal Transport

» Preliminary and basic concepts
» Typical variants and computational methods

Part 2 OT-based Generative Modeling

> A (partial) family tree of OT-based generative models
P Generative models for structured data

Part 3 OT-based Privacy-preserving Machine Learning

» Robust multi-modal learning paradigms
» Decentralized distribution comparison
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Generative Modeling = Distribution Fitting and Matching

Px

N

>

» g: Z+— X is the generator/decoder.
» p. is the (predefined) latent distribution, and p, = gxp. is the model distribution.
» Learn g to fit data distribution p, by p,.
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OT-based Generative Modeling Paradigms

Solution 1: Minimize W; approximately in its dual-form.
» WGAN and its variants
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Solution 1: Minimize W; approximately in its dual-form.
> WGAN and its variants

Solution 2: Minimize W, approximately in its primal-form.
» Differentiable Sinkhorn divergence (SinkDiff) and its variants
» Wasserstein Autoencoder (WAE) and its variants
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OT-based Generative Modeling Paradigms

Solution 1: Minimize W; approximately in its dual-form.
» WGAN and its variants
Solution 2: Minimize W, approximately in its primal-form.
» Differentiable Sinkhorn divergence (SinkDiff) and its variants
» Wasserstein Autoencoder (WAE) and its variants
Solution 3: Minimize efficient surrogate of W5, e.g., SW5 and M ST,
» Sliced Wasserstein generative (SGW) model and its variants.
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The Dual Form of W,
The primal form of W,:

WP(u,v) = inf / r—ylPdr(z,y) = inf Eqg . orlllz =yl 37
() L weXQH y|[bdm(x,y) et Eiay) |z —ylP]  (37)

39122



The Dual Form of W,
The primal form of W,:

WP(u,v) = inf / r—ylPdr(z,y) = inf Eqg . orlllz =yl 37
pon) = nt [ e algre ) =t Eeplle-alf) @7

The dual form of W,

4w/¢<m /'mm@ﬂWMMW4MW@W&

> o(x) —P(y) < llz—ylp, ¥V z,y € X2
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The Dual Form of W,
The primal form of W,:

WP(u,v) = inf / r—ylPdr(z,y) = inf Eqg . orlllz =yl 37
pon) = nt [ e algre ) =t Eeplle-alf) @7

The dual form of W,

4@/¢<m / $()dY(y) = 5up By [6(2)] — Eyes (1)), (38)

> o(z) —P(y) < llz —ylp, ¥V 2,y € X2
The dual form of Wi:

Wi(u, ) = sup f(@)dp(x) — / i fy)dy(y) = sup Epp[f ()] — Eynr[f(y)]-(39)

feEL1 JxzeX feL

» f € Ly: f satisfies 1-Lipschitzness, i.e., |f(z) — f(y)| < |z — y|1, V =,y € X2
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Wasserstein Generative Adversarial Network (WGAN)
Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017]: Fit
the model distribution p, by minimizing its 1-Wasserstein distance to the data
distribution p, in the dual-form:

Wilpe,pg) = _inf B gnrllle = 9(2)1h] = sup E.[f(2)] = E=[F(9(2))] (a0)
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Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017]: Fit
the model distribution p, by minimizing its 1-Wasserstein distance to the data
distribution p, in the dual-form:

Wilpaipg) = inf  Eiag)mnlle = 9(2)lh] = sup E.[f(x)] = E:[f(9(2))] (40

Therefore, we have

it Wi, py) = inf sp B,[(2)] ~ E=[/(9(2))] (41)
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Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017]: Fit
the model distribution p, by minimizing its 1-Wasserstein distance to the data
distribution p, in the dual-form:

Wilpe,pg) = _inf B gnrllle = 9(2)1h] = sup E.[f(2)] = E=[F(9(2))] (a0)

Therefore, we have

inf Wi(ps, py) <= inf sup Eq [f(@)] = E:[f(g(2))] (41)
Given a set of samples X = {z,,}2_; and a set of latent code Z = {z,})_;, we have
minmac Y [F(z)] — 3 [F(g(z0)) (2)

g fely - -

[Arjovsky et al., 2017] Arjovsky, M., Chintala, S. and Bottou, L., Wasserstein generative adversarial
networks. ICML, 2017.
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Improve WGAN with Gradient Penalty (WGAN-GP)

Motivations:
» We cannot hold the Lipschitzness of f strictly based on finite samples.

> WGAN clips f's weights to ensure its Lipchitzness, leading to undesired
performance.
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Motivations:
» We cannot hold the Lipschitzness of f strictly based on finite samples.

> WGAN clips f's weights to ensure its Lipchitzness, leading to undesired
performance.

WGAN-GP [Gulrajani, et al., 2017]: Adding a gradient penalty leads to a soft but
better Lipchitz regularizer.

inf sup E.[f(2)] = Bz [f(9(2))] + AE[([ Vg2 F(a(2)) = 1)) (43)
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Improve WGAN with Gradient Penalty (WGAN-GP)
Motivations:
» We cannot hold the Lipschitzness of f strictly based on finite samples.

> WGAN clips f's weights to ensure its Lipchitzness, leading to undesired
performance.

WGAN-GP [Gulrajani, et al., 2017]: Adding a gradient penalty leads to a soft but
better Lipchitz regularizer.

inf sup E.[f(2)] = Bz [f(9(2))] + AE[([ Vg2 F(a(2)) = 1)) (43)

Given samples, we have

minmax y_ f(en) = 3 F(9(z0) A (Vg gDl =D (a4)

n

[Gulrajani, et al., 2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A.C.,
Improved training of wasserstein gans. NeurlPS, 2017.
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SinkDiff: Learning Generative Models Based on Sinkhorn Divergence
Motivations:

» Learn generative models by minimizing the primal-form entropic optimal
transport (EOT).

42/122



SinkDiff: Learning Generative Models Based on Sinkhorn Divergence
Motivations:

» Learn generative models by minimizing the primal-form entropic optimal
transport (EOT).
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» Learn generative models by minimizing the primal-form entropic optimal
transport (EOT).

Problem 1: EOT is not a distance because of the entropic term (i.e., W, (y, i) # 0).
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SinkDiff: Learning Generative Models Based on Sinkhorn Divergence
Motivations:
» Learn generative models by minimizing the primal-form entropic optimal
transport (EOT).
Problem 1: EOT is not a distance because of the entropic term (i.e., W, (y, i) # 0).
» Sinkhorn Divergence [Genevay et al., 2018]:

Whe(p,y) = 2Wp (1, 7) — Wpe(t, i) — Wpe(7,7)- (45)

> €= 00 Wy e(p,y) = 2Wy (1, 7).
> e — o0 Wpe(p,y) = MMD(u,7)

SinkDiff Generative Model:

i fW e\Mx ~ inf ]Ex z)~T - 3
inf Wa.e(pe; py) prerih o Era(a) [llz = g(2)]12] (46)

[Genevay et al., 2018] Genevay, A., Peyré, G. and Cuturi, M., March. Learning generative models with

sinkhorn divergences. AISTATS, 2018.
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SinkDiff: Learning Generative Models Based on Sinkhorn Divergence

Problem 2: The distance between high-dimensional real and fake data suffers from
the curse of dimensionality.
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SinkDiff: Learning Generative Models Based on Sinkhorn Divergence

Problem 2: The distance between high-dimensional real and fake data suffers from
the curse of dimensionality.

» Train an encoder f for dimensionality reduction in an adversarial way

sup irglf Wo.e(f4Das f2Dg)
! (47)

=su inf Er 2)) ot ) — 2))||3
W B el @) - S
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SinkDiff: Learning Generative Models Based on Sinkhorn Divergence

Problem 2: The distance between high-dimensional real and fake data suffers from
the curse of dimensionality.

» Train an encoder f for dimensionality reduction in an adversarial way

Sl}p il’glf V_Vz,e(f#Px, fupg)

—ep  mf  E 17(2) — Fo)IE) 47
£ amell(fape.fapo) f(@),f(g(2))~m 2
» Given a batch of samples,
max min (D(f(X), f(9(2))),T) + H(T). (48)

f g,Telle
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SinkDiff: Learning Generative Models Based on Sinkhorn Divergence

Problem 2: The distance between high-dimensional real and fake data suffers from
the curse of dimensionality.

» Train an encoder f for dimensionality reduction in an adversarial way

Sl}p il’glf Wz;(f#l’x, fupg)

—ep  mf  E 17(2) — Fo)IE) 47
£ amell(fape.fapo) f(@),f(g(2))~m 2
» Given a batch of samples,
max min (D(f(X), f(9(2))),T) + H(T). (48)

f g,Telle

» This method can be extended by the OT-GAN in [Salimans et al., 2018], replacing
the Sinkhorn divergence to a minibatch energy distance.

[Salimans et al., 2018] Salimans, T., Zhang, H., Radford, A. and Metaxas, D., Improving GANs Using
Optimal Transport. ICLR, 2018.
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Conditional Transport (CT): Amortization of Approximated OT Plan

Motivation: The OT plan in SinkDiff is nonparametric. Calling Sinkhorn-scaling
algorithm is time-consuming.

» Conditional Transport (CT) [Zheng et al., 2021]: Relax the OT plan to two
coupled transition matrices (with two one-side constraints):

St}p igf CT(fupa, f4pg)
= sup inf By g(2)om [d(f (), f(9(2)))] (49)

f 9mE(ps,),m2€M(-pg)
=+ EZ’,Q(Z)NWQ [d(f(.%’), f(g(z)))]

[Zheng et al., 2021] Zheng, H. and Zhou, M., Exploiting Chain Rule and Bayes' Theorem to Compare
Probability Distributions. NeurlPS, 2021.
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Conditional Transport (CT): Amortization of Approximated OT Plan

» Given samples, w1 and mo are parametrized by a softmax-based model
(amortization):

e cxpldlen). ole(:))
MUl (2): 0) = S (@ (m), (g () )
7r2(g(z >‘x¢) _ exp(¢(g(zn )7¢(x)>

e > exp(p(g(zm)), o(x))
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Conditional Transport (CT): Amortization of Approximated OT Plan

» Given samples, w1 and mo are parametrized by a softmax-based model
(amortization):

o eD(9(n), 9(2)
A W e R TE)) 50
7r2(g(z )‘.%' ¢) — exp<¢(g(zn ),¢($)>
o > exp(d(g(zm)), d(2))
» The learning paradigm is
max min(D(f(X), f(9(Z))), Typ(X, 9(Z))) (51)

f 99

where Ty = [m1(2n|g(2m); @)] or [m2(g(zn)|zm; ¢)]-
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Wasserstein Autoencoder (WAE)

Besides approximate the primal form of W), by EOT, another way is applying the
autoencoding architecture.
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Wasserstein Autoencoder (WAE)

Besides approximate the primal form of W), by EOT, another way is applying the
autoencoding architecture.
> Wasserstein autoencoder (WAE) [Tolstikhin, et al., 2018] fits the model
distribution p, by minimizing its W> distance to the data distribution p,
approximately.
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Wasserstein Autoencoder (WAE)

Besides approximate the primal form of W), by EOT, another way is applying the

autoencoding architecture.

> Wasserstein autoencoder (WAE) [Tolstikhin, et al., 2018] fits the model
distribution p, by minimizing its W> distance to the data distribution p,
approximately.

qz;f

) ) — |
H;f W2 (pmpg) ~ %qnjf EpquZ|z;f [dﬂt (xv g(z))] + ’YdP(Ep:u [(Jz|:c;,/'} ’ pZ)?

reconstruction loss distance(posterior, prior)

» q.|z;s s the posterior of 2 given x, parameterized by an encoder f : X — Z.

> q..r = Ep,[qz12;] is the expectation of the posterior distributions.
» p. is the prior of z.

[Tolstikhin, et al., 2018] Tolstikhin, I., Bousquet, O., Gelly, S., & Schoelkopf, B. Wasserstein
Auto-Encoders. ICLR 2018.

(52)
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Comparisons with Other Autoencoders

Method f:X—Z Prior p, Learn p. dp(qz:0,D0-)
VAE Probabilistic N(z;0,1) No KL
GMVAE Probabilistic ? Yo N(zuk, Xg) No KL
VampPrior Probabilistic % 3 N(2:Q(xx))  Yes KL
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Comparisons with Other Autoencoders

Method f:X—Z Prior p, Learn p. dp(qz:0,D0-)
VAE Probabilistic N(z;0,1) No KL
GMVAE Probabilistic ? Yo N(zuk, Xg) No KL
VampPrior Probabilistic % 3 N(2:Q(xx))  Yes KL
WAE Deterministic N(z;0,1) No  MMD/GAN
SWAE Deterministic N (z;0,1) No SWo
RAE Probabilistic/Deterministic % >, N'(z;uy, Xg)  Yes FGWq
HCP-AE | Probabilistic/Deterministic N(z;0,1) No HCP;

SWAE [Kolouri et al., 2018] Kolouri, S., Pope, P.E., Martin, C.E. and Rohde, G.K., Sliced Wasserstein

auto-encoders. ICLR, 2018.
RAE [Xu et al., 2020] Xu, H., Luo, D., Henao, R., Shah, S. and Carin, L., Learning autoencoders with

relational regularization. ICML, 2020.
HCP-AE [Li et al., 2022] Li, T., Meng, C., Xu, H. and Yu, J., Hilbert curve projection distance for
distribution comparison. arXiv:2205.15059. 2022.
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Sliced Wasserstein Generative (SWG) Model

Motivations: Apply a computationally-efficient surrogate of W), to simply the learning
of generative models.
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Sliced Wasserstein Generative (SWG) Model

Motivations: Apply a computationally-efficient surrogate of W), to simply the learning
of generative models.
» Sliced Wasserstein Generative (SWG) Model [Deshpande et al., 2018]:
Minimize SW5 between p, and p, directly as

inf SWa(pe,pg) = inf/ Wa(fupz, f4pg)dD(f)
g g fESD_l

(53)

=1 f W zyJ © z d
11!} /feSDl 2(f#P / g#p) p(f)
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Sliced Wasserstein Generative (SWG) Model

Motivations: Apply a computationally-efficient surrogate of W), to simply the learning
of generative models.

» Sliced Wasserstein Generative (SWG) Model [Deshpande et al., 2018]:
Minimize SW5 between p, and p, directly as

inf SWa(pe,pg) = inf/ Wa(fupz, f4pg)dD(f)
g fESD_l

g
(53)
= inf / Wa(f4pe, | o gup2)dp(f)
g fesb-1
> Given a batch of samples X, we sample L projectors in SP~! uniformly:

L

miny_ Wa(fi(X), fi(9(2))), Z~N(©,D). (54)
=1

[Deshpande et al., 2018] Deshpande, |., Zhang, Z. and Schwing, A.G., 2018. Generative modeling
using the sliced wasserstein distance. CVPR, 2018.
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Max-Sliced Wasserstein Generative (Max-SWG) Model

Motivations: M SW), is strongly equivalent to W), so using it as the surrogate can be
better.
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Max-Sliced Wasserstein Generative (Max-SWG) Model

Motivations: M SW), is strongly equivalent to W), so using it as the surrogate can be
better.

» Max-Sliced Wasserstein Generative (Max-SWG) Model [Deshpande et al.,
2019]: Minimize M SW5 between p, and p, directly as

inf M SWy(ps, pg) = inf  sup Wa(fupe, fapy)
g g fESD*I

=inf sup W2(f#Pa:’fog#pz)
g fESD*I
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Max-Sliced Wasserstein Generative (Max-SWG) Model
Motivations: M SW), is strongly equivalent to W), so using it as the surrogate can be
better.
» Max-Sliced Wasserstein Generative (Max-SWG) Model [Deshpande et al.,
2019]: Minimize M SW5 between p, and p, directly as

inf M SWy(ps, pg) = inf  sup Wa(fupe, fapy)
g g fESDil

=inf sup W2(f#anfog#pz)
g fESD*I

(55)

» Given a batch of samples X, we obtain an adversarial learning paradigm, where f
works as the discriminator:

min max, Wo(f(X). (9(2))). 2 ~N(0.I). (56)

[Deshpande et al., 2019] Deshpande, 1., Hu, Y.T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S., Zhao,
Z., Forsyth, D. and Schwing, A.G., Max-sliced wasserstein distance and its use for gans. CVPR, 2019.
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Amortized Max-Sliced Wasserstein Generative Model
Motivations: The f in Max-SWG is nonparametric. For each batch, we have to solve
an optimization problem iteratively to obtain f.
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Amortized Max-Sliced Wasserstein Generative Model
Motivations: The f in Max-SWG is nonparametric. For each batch, we have to solve
an optimization problem iteratively to obtain f.
» Amortized Max-Sliced Wasserstein Generative (AM-SWG) Model [Nguyen
et al., 2022]: Minimize M SW5 between p, and p, approximately by applying a
parametric projector fy : X?B s SP~1 where B is batch size.

inf MSWa(ps,pg) = inf sup Wol foupa, forpg)
g 9 fp:x2B8D-1 (57)
= inf sup WQ(f#p:L‘a foo g#pz)
9 f:x2By8SD-1
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Amortized Max-Sliced Wasserstein Generative Model
Motivations: The f in Max-SWG is nonparametric. For each batch, we have to solve
an optimization problem iteratively to obtain f.
» Amortized Max-Sliced Wasserstein Generative (AM-SWG) Model [Nguyen
et al., 2022]: Minimize M SW5 between p, and p, approximately by applying a
parametric projector fy : X?B s SP~1 where B is batch size.

inf MSW(pe,pg) = inf sup Wo(foups, foxpg)
g g fg:XQBb—)SD_l

= inf sup WQ(f#p:L‘a foo g#pz)
9 f:x2B58D-1

(57)

» Given a batch of samples X, we obtain an adversarial learning paradigm, where f
works as the discriminator:

winmax Wa(fo(X), fo(9(2)),  Z ~N(O,) (56)

[Nguyen et al., 2022] Nguyen, K. and Ho, N., Amortized projection optimization for sliced Wasserstein
generative models. NeurlPS, 2022.
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A (Partial) Family Tree of OT-based Generative Models

ir;f Wy (P2, pg)

SW-based
Dual Form | Primal Form Surrogate
WGAN SinkDiff / OT-GAN WAE SWG
N s _ nf B [dy (2, 9(f(2))] .
"g‘ ;:E [f(2)] = Ez[f(g(2))] lgf Sl}p Wp,‘r(f#pm f#Pg) + Ap (g2 p2) H;f SWP (pz7 pg)
dp = MMD or GAN
Add Gradient Amortized | Optimize
Penalty OT Plan * * * Linear Proj.
WGAN-GP Conditional Transport SWAE RAE HCP-AE Max-SWG
inf sup B, [f(2)] — E.[/(9(2))] inf CT(ps, p,) ap = 5w, i = r6w, | Nar = 1CPA N inf MSW, (s, py)
+ AE: (| Vo) f(9(2))I = )] g 9

Min-Max Optimization

e (Adversarial Learning)

Amortized
Nonlinear Proj.

Amortized Max-SWG
irglf MSW ,(pz,pg)
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Recent Progress: OT-based Generative Models for Structured Data

Graph,

Sequence,
Point Cloud,

Kernel or Its Gram Matrix, ....

Cope

&
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Gromov-Wasserstein Distance: The OT between MM-Spaces

Gromov-Wasserstein distance [Sturm 2006; Mémoli 2011] between Xy, ., and Vg, .

GWp(de,uxvydy,w) = (infﬂeﬂ(ux uy)Ew $’,y,y’~7rX7r[7“(x 'y, y/)])l/p

1/
= ( inf / / r(x, z',y, y)dﬂ'(x y)dﬂ'@ Y )) p‘
m€ll(pxpy) J(z,a')ex? J(y,y)eV?

Minimize expected relational distance r(z, 2", y,y’) = |dx (z,2") — dy (y,y)|P.
[Sturm 2006] Sturm, K. T., On the geometry of metric measure spaces. Acta Mathematica, 2006.
[Mémoli 2011] Mémoli, F., Gromov—Wasserstein distances and the metric approach to object
matching. Foundations of computational mathematics, 2011.

(59)
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Gromov-Wasserstein Distance for Structured Data (Point Clouds)

Given X = {z,,}M_ || Y = {y,}2_,, and distributions py € AN~ py € AM-L:

n=1-

GW,(X,Y) = (minperi(uy puy) (R T @ T))'/P
. M N 1/p
= ( MINTET(px,py) Zm,m’:l Zn,n’:l (T, Tt Y yn’)tmntm'n’) .

> 7 or T™: the optimal transport plan between samples.
> 1 x ¥ or T* @ T*: the optimal transport plan between sample pairs.
> Useful properties: Translation-, rotation-, and permutation-invariance

(60)
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Gromov-Wasserstein Distance for Structured Data (Graphs)

ubill,
vy, 5) = |d — ﬂ:’ G(Vy,py,Dy)
(‘ [TT17 : T
G(Vx, 1x, DX iii - H T =I[T]
[ 1

/p
GW,(Gx,Gy) : mmTeH(“X ) (R T @ T>)

(61)

. g\ P
= ( MNP (pux,my) E(i,i/,j,j’)NTXT[r(Za 1/7]7]/)]>

> A (pseudo) metric for graphs: permutation-invariant, robust to graph size,
more efficient than QAP.

[Chowdhury et al., 2019] Chowdhury, S., & Mémoli, F. The gromov—wasserstein distance between

networks and stable network invariants. Information and Inference: A Journal of the IMA, 2019.

[Xu et al., 2019] Xu, H., Luo, D., & Carin, L. Gromov-Wasserstein learning for graph matching and

node embedding. ICML, 2019. 56 /122



Fused Gromov-Wasserstein Distance: Combine GW,, with W,

For graphs/point clouds, consider the GW distance between their topological
structure/nodes’ relations and the Wasserstein distance between their node

attributions jointly [Titouan, et al., 2019].
%o
gl
o®0 )o@
®e%l “e00,
o.o.»‘i 0% o
®co L g
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Fused Gromov-Wasserstein Distance: Combine GW,, with W,
For graphs/point clouds, consider the GW distance between their topological
structure/nodes’ relations and the Wasserstein distance between their node
attributions jointly [Titouan, et al., 2019].

® 0
%’.’\.’3 °

o®0 )o@
®e%l “e00,
o.o.»‘i 0% o
| ®e®

FGWP(XdX,uxvydy,#y;/B) = (Treﬂ(i;?;f NY)(l - B) fXxy d(x,y)dn(z,y)

Wasserstein term

1/p
+ fXxy fXx)J Tm,y,ac’,y’dﬂ'<$’ y)dTr(x/, y/)) .

Gromov-Wasserstein term

(62)

[Titouan, et al., 2019] Titouan, V., Courty, N., Tavenard, R., & Flamary, R. Optimal transport for

structured data with application on graphs. ICML 2019.
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Fused Gromov-Wasserstein Distance: Combine GW,, with W,

ot
%0 o0
®e%l “e00,
o.o.f‘ %,
®co Ll g
In practice, given X = {z;}, and Y = {y]}J 1, we have
— M
FGWP(X7Y75) <m1nT€H(uX,p,y) Z me1 Z 33mayn mn

1/p
+ 5 Zm m/=1 Zn w1 T($m7 T/ s YUns yn’)tmntm’n’)
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Fused Gromov-Wasserstein Distance: Combine GW,, with W,

N

In practice, given X = {z;}, and Y = {y;};=1, we have

— ) M N
FGW (X, Y53 8) =(mingerguy oy (1= ) > D" dlw y)lonn

M N 1/p
+5 Zm,m/:l Zn,n’zl r(xm, Tm's Y yn,)tmntmln/)

& (minpen(uy uy)(Dxy — 2DxTDy, T))'/?
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From (F)GW Distance to (F)GW Barycenters

Given {Gi < |, K > 2, their (weighted) GW barycenter [Peyré, et al., 2016] is

_ K
GV, i, BY), {Ty}E| = arg ming Zk_l NeGWE(Gy,, G)
R e e =

Barycenter graph  OT matrices (64)

K
& arg ming min{TkGH(ll’k,ﬂ)}le — Zk:l )\k<DkaBT, Tk>
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From (F)GW Distance to (F)GW Barycenters

Given {Gi < |, K > 2, their (weighted) GW barycenter [Peyré, et al., 2016] is
_ K
GV, u, BY), {T;}E | := arg ming Z M GWE (G, G)
—_——— — k=1
Barycenter graph  OT matrices (64)
. . K T
& arg ming Mingg cry(, p))K |~ Zk:l M\e( DTy B ', Ty,)

Permutation-invariance: If G is a GW barycenter of {G;}5 |, then permute(G) is a

valid GW barycenter as well.
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Implementation of GW Barycenter
» Approximation of @ [Xu, et al., 2019]:

K .
= Zk:l Arinterpolatey (sort(py)), (65)

> sort(-) sorts the elements of the input vector in descending order.
> interpolate;yy (-) samples [V| values from the input vector via an interpolation
method (e.g., bilinear or cubic interpolation).
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Implementation of GW Barycenter
» Approximation of @ [Xu, et al., 2019]:

K .
o= Zk:l Arinterpolatey (sort(py)), (65)

> sort(-) sorts the elements of the input vector in descending order.
> interpolate;y;(-) samples |V| values from the input vector via an interpolation
method (e.g., bilinear or cubic interpolation).
> Alternating optimization strategy:
> Obtain T} = arg minper(p,,a) —(DyTB",T) fork=1,.., K.
» Sinkhorn, Proximal Gradient, Bregman ADMM, ...
» Update barycenter in a closed form (the first-order optimality condition):

1

B = —
ap’

K T
ZH T, DT (66)

[Xu, et al. 2019] Xu, H., Luo, D., & Carin, L. Scalable Gromov-Wasserstein learning for graph
partitioning and matching. NeurlPS, 2019.

60 /122



Open Resources

AAAI'22 Tutorial on Gromov-Wasserstein Learning
https://hongtengxu.github.io/talks.html
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OT-based Graph Generative Modeling
Leverage (F)GW distance and barycenters, we can

» Estimate Graphons (Nonparametric Graph Generative Models)

Sorting &
Smoothing

Adjacency
Matrix

Row/Col.
Sampling

Edge
Sampling

i
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OT-based Graph Generative Modeling
Leverage (F)GW distance and barycenters, we can

» Estimate Graphons (Nonparametric Graph Generative Models)

L ]
L[]
< Sorting & H <Adjacency
Smoothing Matrix
Row/Col. Edge
Sampling

Sampling
> Learn Graph-level Wasserstein Autoencoders

¢Qf\\o
b:\\ oc
) Q) [orera TS
@ o Q\\O O: b \d')
2 S A

-5
Attributed Generated
Graphs Latent Graph Graphs

Representations
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Graphon Estimation: Learning A Nonparametric Graph Generator
Graphon: A Nonparametric Graph Generative Model

Graphon W, G, G

W (z,y) :[0,1]? — [0,1] B
o i = B =l

4
ﬂ Q
@@

Row/Column Element
Sampling Sampling Directed or Undirected
(Uniform) (Bernoulli) Graphs
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Graphon Estimation: Learning A Nonparametric Graph Generator
Graphon: A Nonparametric Graph Generative Model

v ? I

Graphon W, G, g1

W (z,y) :[0,1]? — [0,1] B
B =

4
ﬂ Q
@:
%ﬁ

Row/Column Element
Sampling Sampling Directed or Undirected
(Uniform) (Bernoulli) Graphs
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Two Paradigms of Graphon Estimation

» Traditional paradigm: Given a single large-scale graph, estimate a graphon by a
step-function and make it as smooth as possible.
» Collecting and processing a large-scale graph are challenging.
> The estimation and its smoothness depend on the sorting of nodes (according to
their degrees).
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Two Paradigms of Graphon Estimation

» Traditional paradigm: Given a single large-scale graph, estimate a graphon by a
step-function and make it as smooth as possible.
» Collecting and processing a large-scale graph are challenging.
» The estimation and its smoothness depend on the sorting of nodes (according to
their degrees).
» The proposed paradigm: Given a set of unaligned but small graphs, estimate a
graphon by solving a GW barycenter problem [Xu, et al., 2021].
» Reduce the difficulty on data collection and processing.
» Robust to the challenging cases where the graph nodes are hard to sort.

[Xu, et al., 2021] Xu, H., Luo, D., Carin, L., & Zha, H. Learning Graphons via Structured
Gromov-Wasserstein Barycenters. AAAI 2021.
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Oracle Graphon Estimation

Cut norm: ||W{|g := supy ycq| /| W(z,y)dedy|,
XxY

Cut distance: oo (Wy, Wa) := inf Wy — WY ||o.
¢ € So ~—
Residual
easure-preserved man
Graphon Step function
Wiz, y

(z,y) Wp

' ~ i
Y

Weak Regularity Lemma

2
W = Wello < sl Wi,

(67)
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Oracle Graphon Estimation

Cut norm: |[W|g := supX,yCQ‘ [ Wi(z,y)dzdyl,
XxY

Cut distance: oo (W, Ws) := inf Wy — WY ||o. (67)
¢ € So ~—
o Residual
Measure-| preserved map
oW, Wo) < -—;
P G,
Oracle 1
Graphon Step function Estimation fel
2
W(z,y) Wp am.
~ T
Y :
Weak Regularity L \\ G Gy
eak Regularity Lemma H:::H
IW — Wellg < —— W] Mo . B
—Wrld > —(Ff—F L and i [m| 1]
log K ’ Smoothing ?\‘%'222
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Oracle Graphon Estimation

Cut norm: |[W|g := supX,yCQ‘ / W(a:,y)da:dy‘,
XxY

Cut distance: oo (W, Ws) := inf Wy — WY ||o. (67)
¢ € So ~—
Residual
leasure-| preserved map
G
:::m
Bad ﬁ : I H

Graphon Step function Estimation
W(z,y)

Weak Regularity Lemma \\ .

Merging % <:I @

2
- ”W”Lz and i
Vg K Smeothing Ceorting.

[W—=Wp|o <
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Oracle Graphon Estimation

Cut norm: |[W|g := supX,yCQ‘ / W(w,y)da:dy‘,
XxY

Cut distance: oo (Wy, Wa) := inf Wy — WY ||o.
¢ € Sa ~—
Residual
asure- preserved map
Gy
ﬁ :::m
P H
Bad Im|
Graphon Step function Estimation
W(z,y)

Weak Regularity Lemma \X -

Merging % <:I @

2
———|W||L, and i
Vieg K Smoothing Ug:retsill'lr: ‘

[W—=Wp|o <

Can we achieve graph alignment and graphon learning jointly?

(67)
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Practical Estimation: Optimizing An Upper Bound of Estimation Error

Learning task
> W : 0?2~ [0,1]: An unknown target graphon
Data

> (G Q2+ [0,1]}M_,: The step functions of observed graphs (induced from
adjacency matrices)
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Practical Estimation: Optimizing An Upper Bound of Estimation Error

Learning task
> W : 0?2~ [0,1]: An unknown target graphon
Data
> (G Q2+ [0,1]}M_,: The step functions of observed graphs (induced from
adjacency matrices)
Unknown but useful concepts for theoretical analysis
> (G 02— [0, 1] M_ . Perfectly aligned step functions of observed graphs (by
perfect measure-preserving mapping)
> Wo = ﬁ Z%zl @m: The oracle graph estimator
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Practical Estimation: Optimizing An Upper Bound of Estimation Error

Learning task
> W : 0?2~ [0,1]: An unknown target graphon
Data

> (G Q2+ [0,1]}M_,: The step functions of observed graphs (induced from
adjacency matrices)

Unknown but useful concepts for theoretical analysis
> (G 02— [0, 1] M_ . Perfectly aligned step functions of observed graphs (by
perfect measure-preserving mapping)
> Wo = ﬁ Z%zl @m: The oracle graph estimator
Practical Implementation

» Wp: The practical estimation based on observed {G,,}_,.
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Practical Estimation: Optimizing An Upper Bound of Estimation Error

oo(W, Wp) <éa(W,Wo) + oo(Wo, Wp) (Triangle Inequality)

=50, W) + 00 (17 S G, W)
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Practical Estimation: Optimizing An Upper Bound of Estimation Error
oo(W, Wp) <éa(W,Wo) + oo(Wo, Wp) (Triangle Inequality)

B 60(Gm, Wp)  (Triangle Inequality)
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Practical Estimation: Optimizing An Upper Bound of Estimation Error

oo(W, Wp) <éa(W,Wo) + oo(Wo, Wp) (Triangle Inequality)
1 M .
=50(W, Wo) + 5D(M > G W)

<éo(W,Wo) + —Z 55 Gm,Wp) (Triangle Inequality)

A~

=on(W,Wo) + — Z 0(Gm, Wp)  (60(Gm, Gim) = 0)

—1
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Practical Estimation: Optimizing An Upper Bound of Estimation Error

oo(W, Wp) <éa(W,Wo) + oo(Wo, Wp) (Triangle Inequality)
1 M .
=50(W, Wo) + @(M > G W)
<éo(W,Wo) + 72 55 Gm,Wp) (Triangle Inequality) (68)

M A
:(5[,(“/, WO) + — Z 1 6D(Gma WP) (6D<Gm Gm) = 0)

M m=
]' M !/ /
<on(W, Wo) + 47 Y 0(Gm Wp).  (o(W.W') < &i(W, W)

> ¢, distance: (51(W1,W2) = inf¢€39 ||W1 — W2¢HL1-
» Task: minWPE[()’l]KXK 27]7\;[:1 61(Gm7 W’P)
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Learning Graphons as Gromov-Wasserstein Barycenters

0 (W1, Wa) = GWq(Wy, Wa)

/

[Janson, 2013]
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Learning Graphons as Gromov-Wasserstein Barycenters

51(W1, Wz) = GWl(Wl, WQZ = GWQ(Wl, Wg) . (69)
[Janso?{ 2013] [Mémc][ 2011]
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Learning Graphons as Gromov-Wasserstein Barycenters

51(W1, Wz) =GW; (Wl, WQZ = GWQ(Wl, Wg) . (69)
[Janso?{ 2013] [MémoT[ 2011]

The task becomes a Gromov-Wasserstein barycenter (GWB) problem:

. M
mingy, [ 15 x Zmzl GW2(Gpn, Wp). (70)
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Learning Graphons as Gromov-Wasserstein Barycenters

o1 (Wi, W) = GW1(Wy, Wa) = GWo (W1, Wa) .

[Janson, 2013] [Mémoli, 2011]
The task becomes a Gromov-Wasserstein barycenter (GWB) problem:
) M
mingy, [ 15 x Zm:l GW3 (G, Wp). (70)
Let A and u be the matrix and marginal vectors corresponding to a 2D step function,
we have
p(r)

GW2 G, Wp) = i i3 Liilirir & i —ATAT,T.

2( m P) TGI_I[I(%II{”” Zi,i’,j,j’ T4 Liglitj TEI'I[I(l;lLrll,ug) ( 1 2 > (71)

Elr
[Janson, 2013] Janson, S. Graphons, cut norm and distance, couplings and rearrangements. New York
journal of mathematics, 2013.

[Mémoli, 2011] Mémoli, F. Gromov-Wasserstein distances and the metric approach to object

matching. Foundations of computational mathematics, 2011.
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Two Variants for Structured GWBs

Can we achieve a smoothed graphon?
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Two Variants for Structured GWBs
Can we achieve a smoothed graphon?
» Smoothed GW Barycenter (SGWB) [Xu, et al., AAAI 2021]:

i M
mityy, ek Y GWE (G, Wp) + al AWp|. (72)
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Two Variants for Structured GWBs
Can we achieve a smoothed graphon?
» Smoothed GW Barycenter (SGWB) [Xu, et al., AAAI 2021]:

M
: Z 2 2
mlnwpe[o’l}l{x}{ m=1 GW2 (Gm,W’P) +Oé||AW’P||F (72)
» Similar to classic GWB problem, an alternating optimization strategy works well.

When the graphs are from multiple graphons, how to learn the model?
» A Mixture of GWBs [Xu, et al., AAAI 2021]:

iy 40 | peri(Lic, L1y ZC_ Z PcmGW2 (G, We) (73)

<P7 DgW>

» D.m: the probability of generating the m-th graph from the c-th graphon.

» Learn a graphon set to minimize its hierarchical GW distance to the observed
graphs.
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Experiments
Easy Case: The node degrees provide strong evidence for sorting nodes.

USvT

d

Ground Truth

(@) W(z,y) =zyand0 <z,y <1
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Experiments
Easy Case: The node degrees provide strong evidence for sorting nodes.

(a)W z,9y) —a:yand0<a:,y<1

Ground Truth

._Ground Truth

1NN
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Hard Case: The nodes of each graph have comparable degrees.

(b)W(zy |x—y\and0<xy<1




Graphon Wasserstein Autoencoder (GWAE) for Graph Generation
Motivations:
» Build a graph-level WAE for graph representation and generation

» Achieve Transferable graph generation (e.g., generating arbitrary-sized graphs
with similar node clustering structures)
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Graphon Wasserstein Autoencoder (GWAE) for Graph Generation
Motivations:
» Build a graph-level WAE for graph representation and generation

» Achieve Transferable graph generation (e.g., generating arbitrary-sized graphs
with similar node clustering structures)

Recall the Wasserstein Autoencoder:
9z f

. . ———
H;f WQ(px,pg> ~ zn}‘ EPIEQZ\z;f[dI(:E?g(Z))] +7dp(Epr [qz\lf]pz)’ (74)
reconstruction loss distance(posterior, prior)

Reconstruction Loss: = and g(z) becomes graphs, so d, cannot be Euclidean
anymore.

» A nature choose is GW distance.
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Graphon Wasserstein Autoencoder (GWAE) for Graph Generation
Motivations:
» Build a graph-level WAE for graph representation and generation

» Achieve Transferable graph generation (e.g., generating arbitrary-sized graphs
with similar node clustering structures)

Recall the Wasserstein Autoencoder:
9z f

. . ———
H;f WQ(px,pg) ~ zn}‘ EPIEQZ\z;f[dI(:E?g(Z))] +'7dp(]Epr [qz\lf]pz)’ (74)
reconstruction loss distance(posterior, prior)

Reconstruction Loss: = and g(z) becomes graphs, so d, cannot be Euclidean
anymore.

» A nature choose is GW distance.
Model Architecture:

» Encoder f can be a GNN

» Decoder g can be a Gromov-Wasserstein Factorization (GWF) model
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Gromov-Wasserstein Factorization

Traditional Factorization Models:
» Given {yi,...,yr}, we would like to learn the basis A = [ay,...,ax]| and the
coefficient vector (representation) \; for each y;.

mln{A A1 }EQ Z djoss A>\za yz) (75)
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Gromov-Wasserstein Factorization

Traditional Factorization Models:
» Given {yi,...,yr}, we would like to learn the basis A = [ay,...,ax]| and the
coefficient vector (representation) \; for each y;.

mln{A A1 }EQ Z djoss A>\za yz) (75)

PCA: dioss = ¢5. (MSE)

Robust PCA: djoss = ¢1. (MAE)

NMF: dioss = £2, {2 = Nonnegativeness.

LDA: dj,ss = KL, © = Simplex.

Wasserstein dictionary learning: djoss = Wasserstein, 2 = Simplex.

\ A A {
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Gromov-Wasserstein Factorization for Graphs

2

» When € = Simplex, we have

K
A\ = arg min, Zk:l Melly — arl|2 = b(A, X; 6s).

. vV
Euclidean barycenter

(76)
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Gromov-Wasserstein Factorization for Graphs

2

» When ) = Simplex, we have

K
A\ = arg min, Zk:l Melly — arl|2 = b(A, X; 6s).

(76)
Euclideanvbarycenter
» Accordingly, a generalized factorization model can be written as
mln{A AL1YEQ Z dloss b(A, Ais dp )7 yz) (77)

b’'s metric
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Gromov-Wasserstein Factorization for Graphs
Gromov-Wasserstein Factorization (GWF) [Xu, AAAI 2020]: Learning interpretable
factorization model to represent unaligned graphs.
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Gromov-Wasserstein Factorization for Graphs
Gromov-Wasserstein Factorization (GWF) [Xu, AAAI 2020]: Learning interpretable
factorization model to represent unaligned graphs.

» Estimate each graph by a GW barycenter graph:
By (Ui, A) := arg mln Z )\kGWQ (B, Gr(Uy)). (78)

> {Gy(Ug)}E |: a set of graph factors.
> A= {\ € AK- 1} _1: the coefficients of the graph factors corresponding to

{G;}I_, (The representations of the observed graphs).
[Xu, AAAI 2020] Xu, H. Gromov-Wasserstein factorization models for graph clustering. AAAI 2020.
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Learning Gromov-Wasserstein Factorization

Learning task:
I

i dioss(Bow (U116, Ai), Gy). 79
12U1:K2(I)I,11§\11;1€AK_1 Zi:l Ioss( g ( 1K ) ) ( )
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Learning Gromov-Wasserstein Factorization

Reparameterize the problem to an unconstrained optimization problem:

min 3" dios(Byu(0(Vi.ic ). softmax(2,))  G). (80)

Vik, 211
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Learning Gromov-Wasserstein Factorization

Reparameterize the problem to an unconstrained optimization problem:

I
min Z,_l dioss(Bgw(0(Vi.x ), softmax(z;)), G). (80)

Vik, 211

(1) Compute optimal transport matrices by GWD modules; (2) Fix the OT matrices
and learn the model parameters via SGD:

«—f(V2)p
T T+ B+

. Vi
10} GWD <r+nf( : )-»
Ty M-Step T

Overall scheme The GWB module

Average
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Parametrizing Coefficients Leads to A Graph Autoencoder
Parametrizing coefficients leads to an autoencoder (GNN-GWF) [Xu, et al, 2023]:

, I
Vi, 6 Zz:l GWa(Bgw(o(Vi:x ), softmax(GNNg(Gi))), Gi). (81)

Reconstruction Error

Reconstructed
||

Graph
Neural
Network

Gromov-Wasserstein
Barycenter

Observed I

t t t t
Graph s 1 ¥y N R
Graph % 7& % -
Representation s \
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Parametrizing Coefficients Leads to A Graph Autoencoder
Parametrizing coefficients leads to an autoencoder (GNN-GWF) [Xu, et al, 2023]:

. I
v, Zizl GWo(Bgw (o (Vi ), softmax(GNNg(G;))), G;).

Reconstruction Error

Reconstructed
I—» Sl
u .
Gromov-Wasserstein
Barycenter

Graph
Neural
Network

Observed I

t t t t
Graph s 1 ¥y N R
Graph % 7& % -
Representation s \

» Eq. (81) works as the reconstruction loss.

» Regularizing the distribution of GNNy(G) leads to a graph-level WAE.
[Xu, et al, 2023] Representing graphs via Gromov-Wasserstein factorization. IEEE TPAMI, 2023
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Extend to Graphon Wasserstein Autoencoder

Attributed
Graphs

[Xu, et al, 2021] Xu, H., Zhao, P., Huang, J. and Luo, D., Learning Graphon Autoencoders for

-—— e = ——

|
|
|
|
|
|
|

nduction) Signals

:> Induced
|

Induced
« Graphons

Graphon
Filters
Encoder f

l’
d(qzf,0z)
Graphon .
L Factor- Sampling
ization |4 |
C%\ ® | Decoder g :
=2 g
, B
Latent Gra_ph ! Reconstructions:
Representations | ,
AN

Generative Graph Modeling. arXiv:2105.14244. 2021.
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Preliminary Results for Transferable Graph Generation

Generated graphs with different sizes
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Summary

» Minimizing W), is an important generative modeling paradigm, which can be
implemented in different ways
» Approximate it in its dual form
P> Approximate it in its primal form
> Approximate it by (strongly or weakly) equivalent surrogates
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» Gromovize W), leads to GW), and its variants for structured data like graphs and
point clouds.
» The algorithms of W), are applicable under slight modification
» The problem becomes non-convex but the algorithms still lead to stationary points
» GW barycenter provides a promising way to aggregate graphs
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Summary

» Minimizing W), is an important generative modeling paradigm, which can be
implemented in different ways
» Approximate it in its dual form
P> Approximate it in its primal form
> Approximate it by (strongly or weakly) equivalent surrogates
» Gromovize W), leads to GW), and its variants for structured data like graphs and
point clouds.
» The algorithms of W), are applicable under slight modification
» The problem becomes non-convex but the algorithms still lead to stationary points
» GW barycenter provides a promising way to aggregate graphs
» Applying GW distance and barycenter, we can develop generative models for
graphs in different ways.
» GWB-based graphon estimation
P Gromov-Wasserstein factorization for graph representation and generation
» Graph-level Wasserstein autoencoder
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Outline

Part 1 Introduction to Computational Optimal Transport

» Preliminary and basic concepts
» Typical variants and computational methods

Part 2 OT-based Generative Modeling
» A (partial) family tree of OT-based generative models
» Generative models for structured data

Part 3 OT-based Privacy-preserving Machine Learning

» Robust multi-modal learning paradigms
» Decentralized distribution comparison
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Data Privacy Issues in Machine Learning

» Case 1: | have data but they are noisy, incomplete, unaligned, ...
» Keep robustness to imperfect data
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» Case 2: | don't have data because of privacy protection, limited budgets, poor
sensors, ...

» Achieve machine learning without raw data sharing
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Data Privacy Issues in Machine Learning

» Case 1: | have data but they are noisy, incomplete, unaligned, ...
» Keep robustness to imperfect data

» Case 2: | don't have data because of privacy protection, limited budgets, poor
sensors, ...

» Achieve machine learning without raw data sharing
We can develop OT-based solutions to the challenges.
» OT-based robust multi-modal learning for Case 1

» Privacy-preserving distributed distribution comparison for Case 2

83,122



Two (Questionable) Assumptions on Multi-modal Learning

Patient 1 Patient2 .... PatientN Zz ~ Dy v )
Clinical g j J
Radiological
Pathological
Genomic 7, A, I
Well-aligned multi-modal data Shared latent distribution
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Real-world Multi-modal Scenarios

» Only do some tests

» Have admissions in different
hospitals

» Collect data independently
from different hospitals

» Complementary modalities

Hospital 3

Same patient,

but unaligned
®
Space

View 1

Blood ﬁo
Test

View 2 A\
Drugs Q @

View 3
Genetic
Test

E
EE E
=
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Real-world Multi-modal Scenarios

Unaligned multi-modal data + Clustered modalities in latent spaces.

Unaligned data

W 1 ¢ [ ]
'/:‘_. * s
] . . "0,
Ty : : : AT o o
: : : o3%: e e
1 [ ] L ]
LA ]
. . e ? * .

. 2o,
In : .:: ‘
— [l S >
Ty = [Ty, Zj] T AL X oo X Xs
n=1,...,.N
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Traditional Multi-modal Learning Paradigms

» Multi-modal data [X7, ..., Xg] € RV*(P1+..4Ds),
> Learn latent representations directly or learn S encoders {fs : RPs s Z}5_,.
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» Multi-modal data [X7, ..., Xg] € RV*(P1+..4Ds),
» Learn latent representations directly or learn S encoders {f, : RPs — Z}:f:l.
Multi-kernel Fusion (MKF): Learn the encoders implicitly

_ _ S
maxy (o5 (U KU), st.K=5 oK, (82)
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Traditional Multi-modal Learning Paradigms

» Multi-modal data [X7, ..., Xg] € RV*(P1+..4Ds),
» Learn latent representations directly or learn S encoders {f, : RPs — Z}:f:l
Multi-kernel Fusion (MKF): Learn the encoders implicitly

MaXy (q,}5 tr(U'KU), st K = Z as K. (82)

Canonical Correlation Analysis (CCA):
min{fs,Us S Zs;és/ ||Us o fs(Xs) — Uy o fs/(XS’)H%v

(83)
s.t. (Uso fo(Xs)) " Ugo fo(Xs) =1, Vs
Generalized Canonical Correlation Analysis (GCCA):
S
min{f&US}S:l’G Z -1 HUS o) fs,(Xs) - GHQF, S.t. GTG - I, VS (84)
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Traditional Multi-modal Learning Paradigms

» Multi-modal data [X7, ..., Xg] € RV*(P1+..4Ds),
» Learn latent representations directly or learn S encoders {f, : RPs — Z}§:1
Multi-kernel Fusion (MKF): Learn the encoders implicitly

MaXy (q,}5 tr(U'KU), st K = Z as K. (82)

Canonical Correlation Analysis (CCA):
min{fs,Us S Zs;és/ ||Ub o fs(Xa) — Uy o fs/(XS’)H%>

(83)
s.t. (Uso fo(Xs)) " Ugo fo(Xs) =1, Vs
Generalized Canonical Correlation Analysis (GCCA):
S
ming s @ U0 fu(X) =G}, st.GTG=1T, Vs (84)

> How to make them applicable for unaligned data?
» How to introduce modality-level clustering structure?
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Extend MKF to Unaligned Data via GW Barycenters

Fuse kernels by solving a weighted GW barycenter
problem:

mMaxy 14,35 | tr(UTKU),

Kernel 1 ﬁi‘ll

*
Kernel 2

Kernel M-}

_ ) s (85)
st. K € min Zs:l asGWo(K, Ky).

1
i GW
1
i

___________

Fused Kernel
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Extend MKF to Unaligned Data via GW Barycenters

Fuse kernels by solving a weighted GW barycenter
problem:

Kernel 1 ﬁigl HlaXU7{aS}S:1 tr(UTKU),

s (85)
_— ol ew | st. K € min Zs:l asGWo(K, Ky).
erne : Barycenteri
: : {___.....-! Nested optimization:
Fused Kernel i
1. Compute the barycenter in a closed form
Kernel M [
7 1 S * *\ T
K = = 28:1 as T K (TY) (86)

2. Plug the barycenter into the objective function:

WXy (o5 1 (UT ( Z; a ;T K, (T;)T> U) (87)
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Extend MKF to Unaligned Data via GW Barycenters

When computing the kernels by latent codes, we obtain parametric kernels and the
Gromov-Wasserstein multi-modal alignment and clustering model:

_ S
maxyen (7,5, (U KU), st. K € min Zs:l asGWo(K, K(fs) ).

min GW (K1) param. kernel
b
Modality 1 Kernel 1
-0—@—@—> —P Encoder1 —_ i
Weighted GW Barycenter
Modality 2 Kernel 2 ;
¢ e - BB )Y .
. . )
* > —1 optimal
ot * Encoder 2 Transports Fused Kernel
for Alignment for Clustering

Modality M

,
‘ ‘
‘ ‘
i |
‘ |
|
: i 3
: e |{ T B
‘ |
‘ |
‘ |
‘ |
‘ |

|

|

|

|

o IEstimation
Error
a ] = Encoder M ]
B Ground !
5] Truth
o )

[Gong et al, 2022] Gong, F., Nie, Y. and Xu, H., Gromov-Wasserstein multi-modal alignment and
clustering. CIKM, 2022.
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Multi-modal Clustering Performance

Table 2: The performance of different clustering methods. Here, “-” means that a method fails to obtain results in 10 hours.

Data t Datasets HandWritten Caltech 7 ORL Movies Prokaryotic
adWPE  Algorithms | ACC  NMI  ACC NMI ACC NMI ACC NMI  ACC  NMI
MCCA | 0.8269 07775 05313 04716 03475 04992 00989 0.0722 05620 0.1204
Wellalioned  DCCAE | 06537 06216 04110 03850 05625 07373 01572 0.1194 05070 0.1827
= i) AHnAE | 07505 06912 04600 04575 04600 0.6603 0.1880 0.918 05390 0.2625
= MVKSC | 0.6749 06376 0519 02537 03013 05291 0.2285 0.2098 0.6188 0.3191
MultiNMF | 0.8882 0.8279 04525 0.5120 0.6900 0.8100 0.1726 0.1856 05771 0.2495
so% unaligned  CPM-GAN | 07250  0.6069 03472 03151 01987 03703 01210 01753 03793 0.3294
(” 50 §) MVC-UM - - 03958 03838 0.5863 0.7586 0.1831 01950 0.3950 0.0807
= GWMAC | 0.8469 0.8156 03541 05010 05322 07068 0.1993 02195 0.5515 03286
100% unaligned MVC-UM - - 03112 02456 05431 0.7452 0.1841 01953 04451 0.0554
(B=1) GWMAC | 0.8144 0.7546 0.3568 0.4945 05118 07026 0.1928 0.2138 0.5479 0.3259

90/ 122



Multi-modal Clustering Performance

Visualize the clustering results of the Handwritten dataset
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Extend CCA to Unaligned Data via Sliced Wasserstein
Sliced Wasserstein Canonical Correlation Analysis (SW-CCA):
. —=2
ming s ;s ZS# SWo(Us o f5(X,), Uy o fo (X)),
s.t. (Uso fo(Xs) " Uso fo(Xs) =1, Vs

Sliced Wasserstein Generalized Canonical Correlation Analysis (SW-GCCA):

(89)

ming )5 .G Z 5W2 (Uso fo(X0), @), st.G'G=1, Vs (90)
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Extend CCA to Unaligned Data via Sliced Wasserstein
Sliced Wasserstein Canonical Correlation Analysis (SW-CCA):

. —2
ming s ;s ZS#, SWo(Us o f5(X,), Uy o fo (X)),

(89)
s.t. (Uso fo(Xs) " Uso fo(Xs) =1, Vs

Sliced Wasserstein Generalized Canonical Correlation Analysis (SW-GCCA):

ming, ;35 | @ Z SWz (U, 0 1(X,),G), s.t.GTG=1I, Vs (90)

» Using SW distance does not require aligned data.

> It is differentiable and efficient, just requiring random projections and sorting
operations.

[Luo et al., 2022] Luo, D., Xu, H. and Carin, L., Differentiable Hierarchical Optimal Transport for
Robust Multi-View Learning. TPAMI, 2022.
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Extend CCA to Unaligned Data via Sliced Wasserstein

» Treat Us as a linear random projector, i.e., Us : Z +— R, and learn it in an
adversarial way, we have

Max-Sliced Wasserstein Canonical Correlation Analysis (MSW-CCA):

. — 2
mln{fs}§:1 Zs;ﬁs/ MSWQ(fS(XS)v fs’ (Xs’))7

(91)
s.t. (Uso f5(Xs)) Uso fo(Xs) =1, Vs
Max-Sliced Wasserstein Generalized Canonical Correlation Analysis
(MSW-GCCA):
_ s ——2
mingys o >, MSW,(f(X.),G), st.GTG=1, Vs (92)
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Hierarchical Optimal Transport for Modality Clustering

Aligned  Unaligned Optimal Tranqurt Optimal _T_ranSPOH

Labeled Unlabeled between Modalities between Modalities and Clusters

Data_ Data View 1 View1 View2 View3 View4 Cluster 1 Cluster 2 Cluster 3

View 2
Modality 2 — f2
o > ~> Classifier —»
Modality 3 - fi
Modality 4 - /i
/
Label O Wasserstein Space of Modalities

Principle:

» Further extend SW-CCA and SW-GCCA

» Capture the relations among the modalities by their OT distances.
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Hierarchical Optimal Transport for Modality Clustering

Extend SW-CCA: Learn the pairwise relations between different modalities.

2
min qu/SW USO sXS7U5’O s/ XS’
g YD s SWUse fiX), U o fo(X)
Well(5ls,51s)

HierarcT'chaI oT
+al| Y (Uso (X)) Uso fi(Xs) — I|[5+8 HW) .

CCA-Regularizer (W log W)

(93)

> Lower level: the SW distance between different modalities’ sample sets.

> Upper level: Take the SW distances as the cost matrix, compute the EOT
between the group of modalities and itself. (Set wss = 0 to avoid trivial solutions)
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Hierarchical Optimal Transport for Modality Clustering

Extend SW-CCA: Learn the pairwise relations between different modalities.

2
min qu/SW Uso sXS7Us’O s/ XS’
g YD s SWUse fiX), U o fo(X)
Well(5ls,51s)

HierarcT'chaI oT
+al| Y (Uso (X)) Uso fi(Xs) — I|[5+8 HW) .

CCA-Regularizer (W log W)

(93)

> Lower level: the SW distance between different modalities’ sample sets.

> Upper level: Take the SW distances as the cost matrix, compute the EOT
between the group of modalities and itself. (Set wss = 0 to avoid trivial solutions)

» W™ indicates the clustering structure implicitly by the pairwise similarity between
different modalities.
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Hierarchical Optimal Transport for Modality Clustering

Extend SW-GCCA: Introduce K learnable reference matrix {Gy.}X | and learn the
pairwise relations between the modalities and the references.

) _——9
- E X wspSWo(Us o f5(Xs), Gi)
{fs:Us}o—1AGr =y 5
1 1 N~
WGH(§ ls,7¢ 1K) Hierarchical OT

) (94)
tall Y, GiGl — 1|, +BH(W).

GCCA Regularizer

> Lower level: the SW distance between each modality's sample set and the
reference.

> Upper level: Take the SW distances as the cost matrix, compute the EOT
between the group of modalities and the clusters.
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Hierarchical Optimal Transport for Modality Clustering

Extend SW-GCCA: Introduce K learnable reference matrix {Gy.}X | and learn the
pairwise relations between the modalities and the references.

) _——9
- E X wspSWo(Us o f5(Xs), Gi)
{fs:Us}o—1AGr =y 5
1 1 N~
WGH(§ ls,7¢ 1K) Hierarchical OT

+a > GGl —I|+BH(W).

GCCA Regularizer

> Lower level: the SW distance between each modality's sample set and the
reference.

> Upper level: Take the SW distances as the cost matrix, compute the EOT
between the group of modalities and the clusters.

> W™ indicates the clustering structure explicitly.
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Performance on Multi-modal Classification

Classification accuracy Classification accuracy Classification accuracy
76
95
74
90
72
T T 70
8 - 80 - Lscca
~{- DGCCA 75 DGCCA 68
80 e ~f- AECCA - AECCA
I ~F- coMIC 70 -I- comic 66 -
—4— DHOT Eq.(9) 65 —4— DHOT Eq.(9) [~ —4— DHOT Eq.(9)
75 I —4— DHOT Eq.(10) L —4— DHOT Eq.(10) 64 —4— DHOT Eq.(10)
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
The percentage of aligned data The percentage of aligned data The percentage of aligned data
Caltech? Handwritten Cathgen

[Luo et al., 2022] Luo, D., Xu, H. and Carin, L., Differentiable Hierarchical Optimal Transport for
Robust Multi-View Learning. TPAMI, 2022.
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Distributed Distribution Comparison

» In all above work, the data of each distribution are assumed to be stored in a
centralized way. The accessibility of the data is not considered.
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Distributed Distribution Comparison

» In all above work, the data of each distribution are assumed to be stored in a
centralized way. The accessibility of the data is not considered.

......................................

7

s Distributed AN Distributed
Storage Y2 Storage
\ 73
 / /

» Real-world large-scale data are often stored in different servers in a distributed way.

» We need to find a way to achieve distributed distribution comparison.
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(Centralized) Distributed Distribution Comparison

_______________________________________

@,
Distributed | X f ™ pistributed
Storage | ' P V2 i Storage

5 Lo <] Central ¢ ;

Ser:ver .~

| /i 4

s @

» High communication cost or high communication bandwidth requirement

» High storage cost in the central server.
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(Decentralized) Distributed Distribution Comparison

0

A -

Distributed
Storage

Distributed
Storage

» Low cost on storage and low bandwidth cost

» Slow convergence (maybe high communication cost)
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Privacy-preserving Distributed Distribution Comparison
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» Approximation precision + privacy preservation + communication efficiency
» Distributed Domain Adaptation, Federated Learning, ...
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A Potential Solution: Decentralized Entropic Optimal Transport

Decentralized EOT

P AATEIE,

.....................................

Source Domain , | Target Domaln

Ml"“g‘:"yl

i Distributed
i Storage

Distributed |
Storage |
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Entropic Optimal Transport and lts Fenchel Dual Form
Entropic optimal transport (EOT) distance, or called Sinkhorn distance:

1/p

Wo(u,~) = ( inf ) dr(z, — cH(n),

= (1, 7) (wefﬁm /X ) di/g; m(z y)) eH () (95)
le—yli2
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Entropic Optimal Transport and lts Fenchel Dual Form
Entropic optimal transport (EOT) distance, or called Sinkhorn distance:

1/p
We(p,y) = inf ,y)dm(z, —eH(m),
()= (ot | ela y)in(a.) = cH (05)
lz—yllp

» Strictly-convex, but ¢(z,y) and 7(x,y) are not friendly for decentralized cases.
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Entropic Optimal Transport and lts Fenchel Dual Form
Entropic optimal transport (EOT) distance, or called Sinkhorn distance:

1/p
We(p,y) = inf ,y)dm(z, —eH(m),
()= (ot | ela y)in(a.) = cH (05)
lz—yllp

» Strictly-convex, but ¢(z,y) and 7(x,y) are not friendly for decentralized cases.
Fenchel Dual Form of EOT:

WP(u) == sup /X u()dp(z) + /X o(y)dr(y) — / M 4 (y)

u,vECy X2
JSON (96)
u(@)+v(y) _ c(z.y)

= sup Eovpyeqfu(z) +o(y) —ee = e ]

u,vECy

fe(z,y,u)

» Unconstrained dual functions + Expectation-based formulation

103 /122



Entropic Optimal Transport and lts Fenchel Dual Form
Entropic optimal transport (EOT) distance, or called Sinkhorn distance:

1/p
We(p,y) = inf ,y)dm(z, —eH(m),
()= (ot | ela y)in(a.) = cH (05)
lz—yllp

» Strictly-convex, but ¢(z,y) and 7(x,y) are not friendly for decentralized cases.
Fenchel Dual Form of EOT:

WP(u) == sup /X u()dp(z) + /X o(y)dr(y) — / M 4 (y)

u,vECy X2
JSON (96)
u(@)+v(y) _ c(z.y)

= sup Eovpyeqfu(z) +o(y) —ee = e ]

u,vECy

fe(z,y,u)

» Unconstrained dual functions + Expectation-based formulation

Keypoint: A privacy-preserving and communication-efficient approximation of x(z,y).
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The Dual Problem in Decentralized Scenarios

> Storage protocol p ® ¢ = [pig;]:
» Hierarchical model: Select agents via p or g. Scatter data via p; or ;.
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> Storage protocol p ® ¢ = [pig;]:
» Hierarchical model: Select agents via p or g. Scatter data via p; or ;.

I J

p= D il V=) 4 (97)
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The Dual Problem in Decentralized Scenarios

» Storage protocol p ® ¢ = [p;q;]:
» Hierarchical model: Select agents via p or g. Scatter data via p; or ;.
I J

p= D il V=) 4 (97)

» Communication protocol E = [e;]:
» ¢;; is the probability of the source agent ¢ communicates with the target agent j.
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The Dual Problem in Decentralized Scenarios

> Storage protocol p ® ¢ = [pig;]:
» Hierarchical model: Select agents via p or g. Scatter data via p; or ;.

I J

p= D il V=) 4 (97)

» Communication protocol E = [e;]:
» ¢;; is the probability of the source agent ¢ communicates with the target agent j.
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Source Domain || Target Domain |

2 Distributed |
Storage |

104 /122



The Dual Problem in Decentralized Scenarios
The oracle under storage protocol:

Wa (/J,, ’Y) = Ssup ExNM,yN'yfs (.T, Yy, u, ’U)

u,veCx
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The Dual Problem in Decentralized Scenarios
The oracle under storage protocol:

Wa (,u, ’7) = Ssup ExNM,yN'yfa (:B, Yy, u, ’U)

u,veCx

= sup Eq j)peqBarpymry fo(@y,u, ).
u,veCy

The real case under communication protocol:

Wa(ﬂa '7) = Sup E(i,j)NEEI'NNi,yN’Yj fE (LL’, Yy, u, ’U).

u,vECx

(98)

(99)
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The Dual Problem in Decentralized Scenarios
The oracle under storage protocol:

Wa (,u, ’7) = Ssup ExNM,yN'yfa (:B, Yy, u, ’U)

u,veCx

= sup Eq j)peqBarpymry fo(@y,u, ).
u,veCy

The real case under communication protocol:

Wa(lu’a fY) = Sup ]E(i,j)NEEQCNui,yN’Yj fE (.’1,', Y, u, ’l)).
u,vECx
Theorem (Protocol Mismatching Error)

When max; j We(ui,v;) <7 and 3, leij — pigj| < o,

We(p,y) — Welp, )| < 1o

(98)

(99)

(100)
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Sample-based Optimization

Given N source samples and M target samples, we have
FE(U7U§K7E)

I J
max >y Ne (K u®, ) (101)

u:{u(l)}{: GRN <_ — "
U—{v(j)}J 1GRM =1 j=1 (%,9)
= j=1 €

K = [k(zn,ym)] € RVM and K;; = [/ﬁ;(as,(l),ygl))] € RNi*M; is a block of K.
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Sample-based Optimization

Given N source samples and M target samples, we have
FE(U7U§K7E)

J
AT g Z Z N ,J,u(),v(f)). (101)

u={u®}_ eRN £ -
L Ji= =1 j=1 Mg
U:{U(J)}JleeRM S( )

K = [k(zn,ym)] € RVM and K;; = [/ﬁ;(as,(l),ygl))] € RNi*M; is a block of K.

» The decomposable global dual objective F:
» Each local dual objective fa(i’j) involves an agent pair.
» The dual variables can be scattered to different agents.

» The global kernel can be one-step and blockwisely computed.
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Sample-based Optimization

Given N source samples and M target samples, we have
FE(U7U§K7E)

J
AT g Z Z N ,J,u(),v(f)). (101)

u={u®}_ eRN £ -
L Ji= =1 j=1 Mg
U:{U(J)}JleeRM S( )

K = [k(zn,ym)] € RVM and K;; = [/ﬁ;(as,(l),ygl))] € RNi*M; is a block of K.
» The decomposable global dual objective F:

» Each local dual objective fa(i’j) involves an agent pair.

» The dual variables can be scattered to different agents.
» The global kernel can be one-step and blockwisely computed.

» The keypoint is approximating each local kernel K;;.
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Privacy-preserving and Communication-efficient Kernel Estimation
» Treat x(z,y) as a kind of generalized inner product (GIP):

/q,(x,y) = eXp(—HJE — y||3/6) = ?(0<m,y)a HxH: Hy”)J (102)

G-Lipschitz
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Privacy-preserving and Communication-efficient Kernel Estimation
» Treat x(z,y) as a kind of generalized inner product (GIP):

,Lg(x7y) = eXp(—HJE — y||3/6) = ?(0<x,y)a HxH: HyH)J (102)

G-Lipschitz

» Given N; samples {xﬁf)}Ni , and P random vectors {w,}Z_;, we have

n=

Ay, = [[({we, 21y > 0)] € {0,137V,
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Privacy-preserving and Communication-efficient Kernel Estimation
» Treat x(z,y) as a kind of generalized inner product (GIP):

k(@ y) = exp(=lle = yll3/e) = 90y, lll, Iy])) -

(102)
G- Llpschltz
» Given N; samples {xﬁf)}ff;l and P random vectors {w}}_,, we have
Ay = [[((we, 2)) = 0)] € {0, 137N,
(103)

2
(4) ,(4) ) 7)
Al yD) = g (7 [1 = (a0l 1221, 1551,
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Privacy-preserving and Communication-efficient Kernel Estimation
» Treat x(z,y) as a kind of generalized inner product (GIP):

k(@ y) = exp(=lle = yll3/e) = 90y, lll, Iy])) -

(102)
G- Llpschltz
» Given N; samples {xﬁf)}ﬁil and P random vectors {w}}_,, we have
Ay, = [I({we () > 0)] € {0,137,
(103)

2
(1) o,() — 2 a® )
w9 = o [1 = 2 (e a1 2 18821 ).
Theorem (Kernel Approx. Error, based on (Khanduri, et al., ICLR 2021))

~ 3272 2N+ M 8 2N+ M
IP<||KK||§G(N+M)(\/ - log 2. :; )+3;log(;—))>21&104)
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Step 1 of DEOT: Compute and Broadcast A's

Collect A’s
A’YlA’YZ

< )1

A’74 A

A

k’h

1:

Draw random variables {w, € RP} | ~ N(0,1p)
and broadcast them to all agents.

: for Each source agenti € {1, ..., I} do

Construct A,,, via (11) and broadcast it to all target

agents. O(JN;P)

If data is not normalized, broadcast {||asn) 132 to

all target agents. O(JN;)
: end for

: for Each target agent j € {1,...,J} do

Construct A, via (11) and broadcast it to all source

agents. O(I M i P)

If data is not normalized, broadcast {”y(J ) M5 to

all source agents. O M;)
: end for
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Step 2 of DEOT: Update Dual Variables via MRBCD

» Privacy-preserving objective: Fy(u,v; I?, E) = E” eijfe(i’j), where
» Apply mini-batch randomized block coordinate descent (MRBCD).
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Step 2 of DEOT: Update Dual Variables via MRBCD

» Privacy-preserving objective: Fy(u,v; I?, E) = E” eijfe(i’j), where
» Apply mini-batch randomized block coordinate descent (MRBCD).

for An agent pair (i,5) ~ E do
Select L target agents Jr ~ E[Z ||1E [i,:]. Send {vU)t};c7, to the source agent i

)t
MORZS RN OR o EjeJL u(z)fs 1,5),
Select L source agents Zj, ~ BT ]]” E[:,j]. Send {u®};cz, to the target agent j

@+ ()t + Zieh v(J)fs 1,5)t
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Step 2 of DEOT: Update Dual Variables via MRBCD

Update local
dual variables MICON.:

@4— Y1
e (3.8

TR,

f42 }

t“@;%

> 1
M1

Select L (1) k‘

source agents U’
’Y 2
(2) k

Select L ¢

target agents
H3 - Update local

dual variables
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Step 3 of DEOT: Compute and Broadcast EOT Distance

Collect dual ,y
objectives i
{7

{f9) }J Wy

We(u, )

Broadcast
7o .
\WE(M ) EOT distance

Welp,7)
Y2

—~ 2\t

Ugw}f_f\ w\ s

3"74 3"’74

111/122



Step 3 of DEOT: Compute and Broadcast EOT Distance

Collect dual
objectives i fyl
{8

{f(‘J }J Wy

We(u, )

Broadcast
7o .
\WE(M ) EOT distance

Welp,7)
Y2

—~ 2\t

Ugw}f_f\ w\ s

lu’3<'> ’)/4 lu'3<" ’)/4

Lemma (Convergence Analysis, based on (Wang, et al., 2014))
Let ||Vu,vF€||2 < R, RO = minu,vGC* ||(U0, UO) - (U,U)

2, and F be Lp_-Lipschitz:

~

E|F.(a, 0% K, E) — F.(u*, v K, E)| < o(

IJ ((Vt+ Lr,)Rj + ﬁRQ)) (105)
- :
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Theoretical Analysis of Approximation Error

Let F.(u,v; K, E) be the objective with specific dual variables u, v and under a kernel
K and a communication protocol F.

E ||F.(a!, 0 K, ) = ()]

Approximation Error
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Theoretical Analysis of Approximation Error

Let F.(u,v; K, E) be the objective with specific dual variables u, v and under a kernel
K and a communication protocol F.

E [|F5<a2 o' K, E) - Ws(u,v)ﬂ =E[|F.(d!,0"; K, E) — F.(i*, 6" K, E)| ]+

~
Approximation Error Convergence Error by Lemma 1

Kernel Error based on Theorem 2 (106)
|We ()~ We (1) |

‘Fe(ﬂ'*af)*aKvE) - Wé‘(:“vV)‘

Gap by Theorem 1
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Theoretical Analysis of Approximation Error
Quantify the influence of kernel approximation error on optimal objective.
» [, is Lipschitz continuous with respect to (u,v) [Genevay, et al. NeurlPS 2016].
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Theoretical Analysis of Approximation Error
Quantify the influence of kernel approximation error on optimal objective.
» [, is Lipschitz continuous with respect to (u,v) [Genevay, et al. NeurlPS 2016].
» [, is a linear and Lipschitz continuous function with respect to K.

Lemma ([Dempe, et al. JGO 2015)

Lemma 3.1] Let ¢(K) = maxy, F: (u, v; K, E) be the optimal objective function with
respect to K. It is L,-Lipschitz continuous:
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Theoretical Analysis of Approximation Error
Quantify the influence of kernel approximation error on optimal objective.
» [, is Lipschitz continuous with respect to (u,v) [Genevay, et al. NeurlPS 2016].
» [, is a linear and Lipschitz continuous function with respect to K.

Lemma ([Dempe, et al. JGO 2015)

Lemma 3.1] Let ¢(K) = maxy, F: (u, v; K, E) be the optimal objective function with
respect to K. It is L,-Lipschitz continuous:

Theorem (Error Bound)
With probability at least 1 — &, we have

1J
Vit

+(N+M)\/]1310g2(]\[5+m+0>.(108)
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Experiments on Synthetic Data
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Figure: Empirical convergence under different batch sizes
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Experiments on Synthetic Data
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Figure: Influences of kernel approximation precision
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Experiments on Synthetic Data
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Figure: Influences of various communication protocols
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Experiments on Synthetic Data
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Figure: Influences of various storage protocols
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Experiments on (Distributed) Domain Adaptation

USPS

MNIST | Preserve

Structure | Method | _ \injor 5 ysPS | Privacy
Source only 1NN 0.385 0.593 Yes
EMD 0.544 0.617 No
Centralized Sinkhorn 0.437 0.620 No
OT-LpL1 0.490 0.676 No
Decentralized | MRBCD g 0.580 0.681 No
(Ours) MRBCD 0.522 0.629 Yes
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Experiments on (Distributed) Domain Adaptation

Centralized

Domains Source only Decentralized (Ours)
INN EMD Sinkhorn OT-LpL1 | MRBCDg MRBCDp
Ar—Cl 0.433 0.471 0.492 0.490 0.483 0.458
Ar—Pr 0.594 0.642 0.673 0.633 0.665 0.639
Ar—Rw 0.667 0.677 0.721 0.686 0.738 0.705
Cl—Ar 0.445 0.504 0.509 0.478 0.531 0.509
Cl—Pr 0.536 0.647 0.617 0.642 0.632 0.606
Cl-Rw 0.589 0.638 0.657 0.664 0.654 0.618
Pr—Ar 0.488 0.516 0.532 0.494 0.538 0.506
Pr—Cl 0.414 0.455 0.465 0.450 0.469 0.425
Pr—Rw 0.683 0.707 0.725 0.714 0.735 0.704
Rw—Ar 0.592 0.611 0.622 0.605 0.621 0.598
Rw—Cl 0.450 0.498 0.505 0.509 0.494 0.463
Rw—Pr 0.729 0.749 0.778 0.770 0.773 0.736
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Summary

» Optimal transport leads to new learning paradigms for unaligned data, and thus is
helpful for both privacy protection and model robustness.

» The correspondence among samples can be inferred by OT plans
> The aggregation/fusion of information can be solved as a barycenter problem
P Achieve encouraging performance on robust multi-modal learning
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Summary

» Optimal transport leads to new learning paradigms for unaligned data, and thus is
helpful for both privacy protection and model robustness.
» The correspondence among samples can be inferred by OT plans
> The aggregation/fusion of information can be solved as a barycenter problem
» Achieve encouraging performance on robust multi-modal learning
P It is possible to solve optimal transport problem approximately in a decentralized
way, with data sharing.
» The dual-forms of OT problems are friendly for distributed learning

» The approximation error is determined by multiple factors and can be analyzed
quantitatively

> Achieve encouraging performance on (distributed) domain adaptation.
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Thank you!

https://hongtengxu.github.io
https://github.com/HongtengXu
hongtengxu®@ruc.edu.cn

AAAI'22 Tutorial on Gromov-Wasserstein Learning
https://hongtengxu.github.io/talks.html
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