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Temporal Point Processes

Event sequence: S = {(ti , di )}Ii=1, di ∈ D.

Counting processes: N = {Nd(t)}Dd=1. Nd(t) is the number of
type-d events occurring till time t.

Intensity function: The expected instantaneous happening rate of
type-u events given the history.

λd(t) =
E[dNd(t)|Ht ]

dt
, Ht = {(ti , di )|ti < t, di ∈ D}.

Figure: Event sequences and intensity functions.
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Hawkes Processes

A multi-dimensional Hawkes process has a particular form of intensity:

λd(t) = µd +
∑D

d ′=1

∫ t

0
φdd ′(t − s)dNd ′(s)

= µd +
∑

(ti ,di )∈Ht
φddi (t − ti ).

(1)

µ = [µd ]: the exogenous fluctuation of the system.

Φ = [φdd ′(t)]: the impact functions measuring the endogenous
triggering pattern of the type-d ′ events on the type-d ′ events.∑

(ti ,di )∈Ht
φddi (t − ti ): the accumulated endogenous intensity caused

by history.
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Typical Examples

Scene Entities Sequences Task

Patient admission Diseases Patients’ admission records Disease network
Job hopping Companies LinkedIn users’ job history Competition network

Online shopping Items Buying/rating behaviors Recommendation

time 

dim. 1 

dim. 2 

dim. 3 

asynchronous and interdependent data 

red arrows indicate dependency 

Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-

2

Prob 1: 
Learn triggering pattern (or 
called Granger causality) 
among events

Prob 2: 
Learn clusters of event 
sequences

Prob 3: 
Predict future events

Prob 3:
Predict 
future events

Prob 4:
More 
applications

(a) Observations

(b) Intensity per entity (c) Endogenous graph

Figure: Illustration of Hawkes process model.
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Learning Methods

Maximum Likelihood Estimation (MLE)

Least Squares Estimation (LS)

Wiener-Hopf Equations

Cumulants-based Methods

...
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Maximum Likelihood Estimation (MLE)

Given conditional intensity function,

For each sequence Sm = {(ti , di )}Ii=1, the conditional probability of
event is

p((t, d)|Ht) = λd(t) exp

(
−

D∑
d ′=1

∫ t

t0

λd ′(s)ds

)
. (2)

For a set of event sequences S = {Sm}Mm=1. Sm = {(tmi , dm
i )}Ii=1, the

log-likelihood function is

L(θ;S) =
M∑

m=1

{ I∑
i=1

log λdm
i

(tmi )−
D∑

d=1

∫ T

0
λd(s)ds

}
. (3)

θ̂ = arg max
θ
L(θ;S). (4)
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Least Squares Estimation (LS)

Assuming φdd ′(t) = add ′κ(t), we can learn Hawkes processes as a linear
predictor:

λd(t) = µd +
∑

ti<t
addiκ(t − ti )

= e>d µ + vec(K (t))>vec(A) = x>d (t)θ.
(5)

θ = [µ; vec(A)] ∈ RD(1+D), xd(t) = [ed ; vec(K (t))].
K (t) = [kdd ′(t)] ∈ RD×D , kdd ′(t) =

∑
(ti ,di )∈Ht , di=d ′ κ(t − ti ).

R(θ; N) = E
[ 1

t2

(
N(t)−

∫ t

0
λ(s)ds

)2]
=

1

MI

∑M

m=1

∑I

i=1

1

(tmi )2

∣∣∣Nm
dm
i

(tmi )−
∫ tmi

0
λdm

i
(s)ds

∣∣∣2 = ‖N − Xθ‖2
2.

θ̂ = arg min
θ

R(θ; N).

(6)
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Challenges of real-world data

1. Extremely-short observations
2. Multiple exogenous sources

(a) Extremely-short and multi-source data (b) Endogenous graph

Figure: Illustration the challenges.

How to learn the endogenous triggering pattern robustly?
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Strategy 1: Single source + HP

Learning
A Single
Hawkes
Process

Figure: Single source data + HP.

min
θsingle

R(θsingle ; Nsingle),

θsingle = [µ; vec(A)],

R(θsingle ; Nsingle) = ‖Nsingle − Xsingleθsingle‖2
2

(7)

Risk: Over-fitting
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Strategy 2: Multi-source + HP

Learning A Single Hawkes Process

Figure: Multi-source data + HP.

min
θsingle

R(θsingle ; Nmulti ),

θsingle = [µ; vec(A)], Nmulti = [N1; ...; NM ]

R(θsingle ; Nmulti ) = ‖Nmulti − Xmultiθsingle‖2
2 =

M∑
m=1

‖Nm − Xmθsingle‖2
2

(8)

Risk: Model misspecification
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Strategy 3: Multi-source + MHP

Learning Multiple Hawkes Processes
with Shared impact functions

Model 1 Model 2 Model 3

Figure: Multi-source data + Multi-HPs.

min
θmulti

R(θmulti ; Nmulti ),

θmulti = [µ1; ...;µM ; vec(A)], Nmulti = [N1; ...; NM ]

R(θmulti ; Nmulti ) = ‖Nmulti − Xmultiθmulti‖2
2

(9)

Question: Can we do better?
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Our strategy: Superposition + HP

Superpostion

Learning
A Single
Hawkes
Process

Figure: Superposed data + HP.

Nsuper (t) =
∑M

m=1
Nm(t)

min
θsuper

R(θsuper ; Nsuper ), θsuper = [
∑M

m=1
µm; vec(A)],

R(θsuper ; Nsuper ) =
1

M2
‖Nsuper − Xsuperθsuper‖2

2

(10)
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The property of superposed Hawkes processes

Theorem (Property 1)

The superposition of M independent Hawkes processes, where
Nm(t) ∼ HP(µm,Φ) for m = 1, ...,M, is still a Hawkes process, where
N(t) =

∑M
m=1 N

m(t) and N(t) ∼ HP(
∑M

m=1 µ
m(t),Φ).

Proof.

λd(t) =
E[dNd(t)|Ht ]

dt
=
∑M

m=1

E[dNm
d (t)| ∪Ml=1 Hl

t ]

dt

=
∑M

m=1

E[dNm
d (t)|Hm

t ]

dt
=
∑M

m=1
λmd (t).

=
∑M

m=1

(
µmd (t) +

∑
(tmi ,d

m
i )∈Hm

t

φddm
i

(t − tmi )
)

=
∑M

m=1
µmd (t) +

∑
(ti ,di )∈Ht

φddi (t − ti ),

(11)
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Why and when does our strategy work?

Theorem (Property 2)

Suppose that we have M independent and stationary D-dimensional
Hawkes processes with shared impact functions, i .e., {HP(µm,A)}Mm=1,
where the parameters are bounded as ‖µm‖2

2 ≤ Bµ and ‖vec(A)‖2
2 ≤ BA.

Each of them has an observed event sequence with I events. Then the
bound on the excess risk E[Rsuper (θ̂super )− Rsuper (θ∗super )] is tighter than

that of E[Rmulti (θ̂multi )− Rmulti (θ
∗
multi )] when the upper bound of

‖
∑M

m=1 µ
m‖2

2, denoted as BΣµ, satisfies

BΣµ ≤MBµ + D(M + D)Bµ log
(

1 +
MI

D(M + D)

)
− D(1 + D)Bµ log

(
1 +

MI

D(1 + D)

)
.

(12)

Here θ∗ represents the ground truth of parameters.
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Proof of Property 2

For the linear predictor θ̂ learned by minimizing the squared loss
R(θ) = ‖y − Xθ‖2

2, where θ ∈ {θ ∈ RC : ‖θ‖2
2 ≤ B} and the M

observations y = [y1; ...; yM ] satisfy yi ∈ {y : |y | ≤ Y }, we
have [Shamir(2015)]

E[R(θ̂)− R(θ∗)] ≤ O
(B + CY 2 log(1 + M

C )

C

)
. (13)

Additionally, we have limt→∞
Nd (t)

t = µd
1−‖A‖2

and ‖A‖2 � 1 for the
stationarity.

Table: Plug our models to (13).

Parameters Multi-source+MHP Superposition+HP
# Samples, M MI MI
# Variables, C D(M + D) D(1 + D)

sup |y |2, Y 2 O(Bµ) O(Bµ)
sup ‖θ‖2

2, B BA + MBµ BA + BΣµ
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Proof of Property 2

E[Rmulti (θ̂multi )− Rmulti (θ
∗
multi )]

≤ O
(BA + MBµ + D(M + D)Bµ log(1 + MI

D(M+D) )

MI

)
,

E[Rsuper (θ̂super )− Rsuper (θ∗super )]

≤ O
(BA + BΣµ + D(1 + D)Bµ log(1 + MI

D(1+D) )

MI

)
.

E[Rsuper (θ̂super )− Rsuper (θ∗super )] ≤ E[Rmulti (θ̂multi )− Rmulti (θ
∗
multi )]

→

BΣµ + D(1 + D)Bµ log(1 +
MI

D(1 + D)
)

≤ MBµ + D(M + D)Bµ log(1 +
MI

D(M + D)
).

(14)
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Typical Infeasible Condition

Lemma (Typical Infeasible Condition)

For the Hawkes processes with the same exogenous intensity and
endogenous impact functions, the superposition-based strategy is
inefficient, E[Rsuper (θ̂super )− Rsuper (θ∗super )] ≥ E[Rsingle(θ̂)− Rsingle(θ∗)].

Proof.

µ1 = ... = µM = µ and ‖
∑M

m=1 µ
m‖2

2 = M2‖µ‖2
2 ≤ M2Bµ = BΣµ.

E[Rsingle(θ̂)− Rsingle(θ∗)] ≤ O
(BA + Bµ + D(1 + D)Bµ log(1 + MI

D(1+D) )

MI

)
E[Rsuper (θ̂super )− Rsuper (θ∗super )]

≤ O
(BA + M2Bµ + D(1 + D)Bµ log(1 + MI

D(1+D) )

MI

)
.
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Typical Feasible Condition

Lemma (Typical Feasible Condition)

For the Hawkes processes with complementary exogenous intensities, i .e.,
{HP(µm,Φ)}Mm=1 and supp(µm) ∩ supp(µm′

) = ∅ for all m 6= m′, the
superposition-based strategy always provides us with benefits on efficiency,
i .e., E[Rsuper (θ̂super )− Rsuper (θ∗super )] ≤ E[Rmulti (θ̂multi )− Rmulti (θ

∗
multi )].

Proof.

‖
∑M

m=1 µ
m‖2

2 =
∑M

m=1 ‖µm‖2
2 ≤ MBµ = BΣµ. Plugging the upper bound

into the condition (12), we have

MBµ ≤MBµ + D(M + D)Bµ log
(

1 +
MI

D(M + D)

)
− D(1 + D)Bµ log

(
1 +

MI

D(1 + D)

)
.
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{HP(µm,Φ)}Mm=1 and supp(µm) ∩ supp(µm′

) = ∅ for all m 6= m′, the
superposition-based strategy always provides us with benefits on efficiency,
i .e., E[Rsuper (θ̂super )− Rsuper (θ∗super )] ≤ E[Rmulti (θ̂multi )− Rmulti (θ

∗
multi )].

Proof.

‖
∑M

m=1 µ
m‖2

2 =
∑M

m=1 ‖µm‖2
2 ≤ MBµ = BΣµ. Plugging the upper bound

into the condition (12), we have

MBµ ≤MBµ + D(M + D)Bµ log
(

1 +
MI

D(M + D)

)
− D(1 + D)Bµ log

(
1 +

MI

D(1 + D)

)
.
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Validations on Synthetic Data

Given K D-dimensional Hawkes process models, we generate 20 event
sequences for each. These Hawkes processes share the same impact
functions, which are parameterized as an infectivity matrix A ∈ RD×D .
The exogenous intensity µ of each Hawkes process is a random sparse
vector, in which only one element is nonzero (Imitation of behaviors in
social networks).
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(b) LS, D = 10
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(c) MLE, D = 5
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Figure: Estimation errors of impact functions obtained by various methods.

Hongteng Xu (Duke University) Learning Hawkes Processes March 11, 2023 20 / 27



Applications to Cold-Start of Recommendation Systems

Given users’ buying-and-rating behaviors (< 3) from January 2014 to April
2014 (Amazon product data), we aim to predict (recommend) items for
them. Because during this period only one or two buying behaviors
happened, this is a typical cold-start problem.

dnext = arg max
d∈D

∑
(ti ,di )∈Ht

addi exp(−w(t − ti )). (15)

Table: Summary of the performance for various methods.

Method MostPopular BPR FPMC Multi-source+MHP Superposition+HP
Metric P@N R@N F1@N P@N R@N F1@N P@N R@N F1@N P@N R@N F1@N P@N R@N F1@N

Top5
Baby 0.145 0.726 0.242 0.306 1.532 0.511 0.484 2.419 0.806 0.339 1.694 0.565 0.306 1.532 0.511

Garden 0.277 1.385 0.462 0.646 3.231 1.077 0.277 1.385 0.462 0.739 3.692 1.231 1.046 5.231 1.744
Pet 0.517 2.585 0.862 0.526 2.632 0.877 0.517 2.585 0.862 0.780 3.900 1.300 0.864 4.323 1.441

Top10
Baby 0.234 2.339 0.425 0.379 3.790 0.689 0.307 3.065 0.557 0.218 2.177 0.396 0.282 2.822 0.513

Garden 0.246 2.462 0.448 0.431 4.308 0.783 0.308 3.077 0.559 0.646 6.461 1.174 0.800 8.000 1.454
Pet 0.371 3.712 0.675 0.428 4.276 0.778 0.470 4.700 0.854 0.549 5.498 1.000 0.630 6.297 1.145

Top20
Baby 0.335 6.694 0.638 0.294 5.887 0.561 0.339 6.774 0.645 0.194 3.871 0.369 0.254 5.081 0.484

Garden 0.369 7.385 0.703 0.431 8.615 0.821 0.300 6.000 0.571 0.439 8.769 0.835 0.508 10.154 0.967
Pet 0.374 7.472 0.712 0.465 9.305 0.886 0.371 7.425 0.707 0.338 6.767 0.645 0.489 9.774 0.931
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THAP: Package Architecture
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Functions and Applications
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Figure: Visualization of typical functions achieved by THAP
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Comparisons with existing toolkits

Table: Models and algorithms of Hawkes processes in different toolkits.

Model
Type Parametric Nonparametric

Impact function Exponential Gaussian Smooth Discrete

Simulator
Branch clustering F�♣ F♣ F♣
(Fast) Thinning F�♣♠ F♣♠ F♣♠

Learning
MLE(+Regularizer) F�♣♠ F♣♠ F♣♠

MLE + ODE F♣♠ F♣♠ F♣♠ F♣♠
Least-squares F F

Analysis

Granger causality F�♣♠ F♣♠ F♣♠ ♠
Mixture model F F F
Distance metric F F F F

Time-Varying HP F♣ F♣ F♣
F = Proposed THAP [Xu and Zha(2017)b]
� = R-hawkes [Da Fonseca and Zaatour(2014)]
� = pyhawkes [Linderman and Adams(2014)]
♣ = PtPack [Du(2016)]
♠ = tick [Bacry et al.(2017)]
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Summary

Hawkes process is a powerful tool to capture the time-dependent
mechanism hidden in real-world data

Robust learning from imperfect (real-world) observations is an
important issue. Data-based solutions have potentials to suppress,
even solve it.

A Matlab-based toolkit for learning Hawkes processes is developed for
the education and the research in the field of statistical machine
learning.

Link of THAP:
https://github.com/HongtengXu/Hawkes-Process-Toolkit

Homepage:
https://sites.google.com/view/hongtengxu
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The End
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