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@ Basic Concepts and Models
@ Learning Methods
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Temporal Point Processes

e Event sequence: S = {(t;,d;)}!_;, d; € D.

o Counting processes: N = {Ny(t)}5_,. Ny(t) is the number of
type-d events occurring till time t.

o Intensity function: The expected instantaneous happening rate of
type-u events given the history.
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Figure: Event sequences and intensity functions.
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Hawkes Processes

A multi-dimensional Hawkes process has a particular form of intensity:

Ad(t) = pg + 25:1 /Ot Pdar (t — 5)dNgr(s)

= pd + Z(t,-,d,-)e?-{t Gad; (t — t;)-

@ = [ug]: the exogenous fluctuation of the system.

@ & = [pyq/(t)]: the impact functions measuring the endogenous
triggering pattern of the type-d’ events on the type-d’ events.

© > (t.d)en. Pdd;(t — tj): the accumulated endogenous intensity caused
by history.
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Typical Examples

Scene Entities Sequences Task
Patient admission Diseases Patients’ admission records Disease network
Job hopping Companies | LinkedIn users’ job history | Competition network
Online shopping Items Buying/rating behaviors Recommendation

asynchronous and interdependent data
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(a) Observations
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Typical Examples

Scene Entities Sequences Task
Patient admission Diseases Patients’ admission records Disease network
Job hopping Companies | LinkedIn users’ job history | Competition network
Online shopping Items Buying/rating behaviors Recommendation
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(a) Observations (b) Intensity per entity (c) Endogenous graph

Figure: Illustration of Hawkes process model.
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Learning Methods

Maximum Likelihood Estimation (MLE)
Least Squares Estimation (LS)
Wiener-Hopf Equations

Cumulants-based Methods
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Maximum Likelihood Estimation (MLE)

Given conditional intensity function,

o For each sequence S, = {(t;, d;)}!_,, the conditional probability of

event is
Z/ Agr(s ) (2)

d’'=1

p((t, d)[He) = Aa(t) exp <

o For a set of event sequences S = {Sp}M_,. S, = {(t™, d™)}_,, the
log-likelihood function is

L(6;S) = Z{Z log Agm (") —

0 =arg meaxﬁ(O;S). (4)
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Least Squares Estimation (LS)

Assuming ¢gq/(t) = agqk(t), we can learn Hawkes processes as a linear
predictor:

Ad(t) = pd + Z , dd; K (t — ;) 5)
—e,p+ vec(K(t))Tvec(A) = x, (1)6.

0 = [u; vec(A)] € RPUFD) | x,(t) = [eq; vec(K(t))].
K(t) = [kaa (£)] € RPP kg () = X1 ayente, dimar B(E — ).

R(6; N) =E [% (N(t) - /Ot A(s)ds)z]

t" 2
~ M Zm 12, 1 t.m ‘ d"'(t /0 )\d;n(s)ds‘ = |IN - X0)3. (6)

6 =arg mem R(6; N).
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Challenges of real-world data

1. Extremely-short observations
2. Multiple exogenous sources
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(a) Extremely-short and multi-source data (b) Endogenous graph
Figure: lllustration the challenges.

How to learn the endogenous triggering pattern robustly?
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Strategy 1: Single source + HP

Learning
A Single
Hawkes
Process

Adam Diana

Figure: Single source data + HP.
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Strategy 1: Single source + HP

Learning
A Single
Hawkes
Process

Adam Dina

Figure: Single source data + HP.

min R(Osingle; Nsing/e)»

single
esingle = [ll'; VeC(A)]’ (7)
R(Osingle; Nsingte) = || Nsingle — Xsingleesing/eHg

Risk: Over-fitting
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Learning A Single Hawkes Process

Figure: Multi-source data + HP.
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Learning A Single Hawkes Process

Figure: Multi-source data + HP.

min R(gs,’ng/e; Nmulti)7

single

05i”gle = [“; VEC(A)], Nmulti = [Nl; cesy NM] (8)

M
R(esingle; Nmulti) - ||Nmulti - xmultiosingleH% - Z HNm - XmosingleH%

m=1

Risk: Model misspecification
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Strategy 3: Multi-source + MHP

8 @8 ©

Adam Diana Becky Diana Diana Charles
\ Model 1 Model 2 Model 3 |
Y

Learning Multiple Hawkes Processes
with Shared impact functions

Figure: Multi-source data + Multi-HPs.
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Strategy 3: Multi-source + MHP

8 @8 ©

Adam Diana Becky Diana Diana Charles
\ Model 1 Model 2 Model 3 |
Y

Learning Multiple Hawkes Processes
with Shared impact functions

Figure: Multi-source data + Multi-HPs.

min R(Gmulti; Nmulti)7

multi

Omuni = [1'; .. V' vec(A)], Nipuri = [NV ...; NM] (9)
R(Omuitis Nimuter) = || Nomutti — Xnutti@murei |3

Question: Can we do better?
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Our strategy: Superposition + HP

n Superpostion

Learning
Adam Diana A Single
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Process
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Figure: Superposed data + HP.
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Our strategy: Superposition + HP

Superpostion

Learning
A Single
Hawkes

Process
S

Becky Diana Adéé“ianh
2 . 8 &
Diana Charles

Diana Charles —

Figure: Superposed data + HP.

M

Nesper(£) = S N7(2)
. M
min R(esuper; Nsuper); esuper = [Zmzl Nm; vec(A)],

super

(10)

1
R(esuper; Nsuper) = W

2
“ Nsuper - Xsuperesuper ||2
Learning Hawkes Processes March 11, 2023
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The property of superposed Hawkes processes

Theorem (Property 1)

The superposition of M independent Hawkes processes, where
N™(t) ~ HP(u™, ®) for m = 1,..., M, is still a Hawkes process, where
N(t) = Sop_y N™(t) and N(t) ~ HP(X 30—y pn™(t), ®).

m=1
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The property of superposed Hawkes processes

Theorem (Property 1)

The superposition of M independent Hawkes processes, where
N™(t) ~ HP(u™, ®) for m =1,..., M, is still a Hawkes process, where
N(t) = Sy N7(2) and N(t) ~ HP(Y iy 1™(2), ®).

_ElNa(6)He] _ 5~M ELING(2)] Uiy Hil

Aa(t) = s o =
P W =, M) (11)
- ZL (ng(t) ™ Z(t,"’,d,-m)eH;" Gaar (t — t,-’"))
MO SN (o)
u)
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Why and when does our strategy work?

Theorem (Property 2)

Suppose that we have M independent and stationary D- dimensiona/
Hawkes processes with shared impact functions, i.e., {HP(u™ A) 1
where the parameters are bounded as ||u™||3 < B, and |vec(A)||3 < Ba.
Each of them has an observed event sequence With | events. Then the
bound on the excess risk E[Rsupe,(ésupe,) — Rsuper(0%,per)] is tighter than
that ofE[Rmu/t,( mu/t,) Rmuti(0,,,::)] when the upper bound of

| M m—1 B™||3, denoted as By, satisfies

Mi
BZM SMB# + D(M + D)Bﬂ Iog(l + m)

Mi )

— D(1+ D)B, Iog<1 + 51 D))"

Here 0* represents the ground truth of parameters.

Hongteng Xu (Duke University) Learning Hawkes Processes March 11, 2023 15 / 27



Proof of Property 2

For the linear predictor 0 learned by minimizing the squared loss
R(8) = ||y — X8||3, where 6 € {0 € R :||0||3 < B} and the M
observations y = [y1;...; ym] satisfy y; € {y : |y| < Y}, we

have [Shamir(2015)]

(13)

E[R(6) - R(6")] < O(B + CY2?log(1 + "C/’)>.

C
N,
o) — ;he and [|Al < 1 for the

Additionally, we have lim;_,
stationarity.

Table: Plug our models to (13).

Parameters Multi-source+MHP | Superposition+HP
# Samples, M Mi Mi
# Variables, C D(M + D) D(1+ D)
sup ‘Y|2: Y2 O(Bu) O(Bl—t)
SUpHBH%, B BA-l-MBH BA"‘BZp,
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Proof of Property 2

A

E[Rmulti (emulti) - Rmulti (e;knulti )]
Ba + MB,, + D(M + D)B,, log(1 + %)
< O( Ml )

bl

I['EI:"'_\)super(é\super) - Rsuper(e)skuper)]
“o B+ By + D(1 + D)By log(1 + i)
< ( M )
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Proof of Property 2

A

E[Rmulti (emulti) - Rmulti (e;knulti )]
Ba + MB,, + D(M + D)B,, log(1 + %)
< O( Ml )

I

IE["'_\)super(é\super) - Rsuper(e)skuper)]
“o B+ By + D(1 + D)By log(1 + i)
< ( M )

I[4:[I'-\>super(0’\super) - Rsuper(a;kuper)] < IE[Rmulti(é\multi) - Rmulti(efnu/ti)]
%
Mi
By, + D(1+ D)B, log(1 + ——2" (14)
Ml

< —_—).
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Typical Infeasible Condition

Lemma (Typical Infeasible Condition)

For the Hawkes processes with the same exogenous intensity and
endogenous impact functions, the superposition-based strategy is

A

inefficient, I['-‘:[F\)super(Osuper) - Rsuper(ozuper)] > IE["'?sin;,rle(é\) - Rsingle(e*)]-
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Typical Infeasible Condition

Lemma (Typical Infeasible Condition)

For the Hawkes processes with the same exogenous intensity and
endogenous impact functions, the superposition-based strategy is
inefficient, IE[F\Jsuper(Osuper) - Rsuper(O* )] > IE[F\)single(a) - Rsingle(e*)]-

super

Proof.
pl=..=pM=pand | ), p"|3 = M?|p|3 < M?B, = B,

| \

A Ba+ By + D(1+ D)B, log(1 + 545
I[i‘ﬂd[l:esingle(e) - Rsing/e(e*)] < O( M| 22 )
IE:[Rsuper(é\super) - Rsuper(g;kuper)]

Ba+ M2B, + D(1+ D)B, log(1 + 5{45y)

Ml )

<o(
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Typical Feasible Condition

Lemma (Typical Feasible Condition)

For the Hawkes processes with complementary exogenous intensities, i.e.,
{HP(u™, ®)YM_ and supp(pu™) N supp(u™ ) = O for all m # m', the
superposition-based strategy always provides us with benefits on efficiency,

i €., IE[Rsuper(esuper) - super(esuper)] < IE[Rmu/tl(emultl) mult:(emu/t,)]
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Typical Feasible Condition

Lemma (Typical Feasible Condition)

For the Hawkes processes with complementary exogenous intensities, i.e.,
{HP(u™, ®)YM_ and supp(pu™) N supp(u™ ) = O for all m # m', the

m=
superposition-based strategy always provides us with benefits on efficiency,

A

i-e-: E[Rsuper(asuper) - Rsuper(gzuper)] S IE[Rmulti(émulti) - Rmulti(e;knu/ti)]-

Proof.

13- m—1 73 = Y1 I3 < MBy = By, Plugging the upper bound
into the condition (12), we have

Mi )

MB, <MB, + D(M + D)B, | (1 M
n = /—L+ ( + )/—Log +D(M+D)

— D(1+ D)B, Iog<1 + D(1M+ID)).

Ol
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Validations on Synthetic Data

Given K D-dimensional Hawkes process models, we generate 20 event
sequences for each. These Hawkes processes share the same impact
functions, which are parameterized as an infectivity matrix A € RDxD
The exogenous intensity p of each Hawkes process is a random sparse
vector, in which only one element is nonzero (Imitation of behaviors in
social networks).

1.4 | (W Single source + HP
I Multi-source + HP

1-2 | Multi-source + MHP

, [J=superposition + HP

ESingle source + HP 0.8 f [l Single source + HP
[l Multi-source + HP [ Multi-source + HP

[EMulti-source + MHP [IMulti-source + MHP
[superposition + HP 0.6 | [__]Superposition + HP

Relative error
Relative error
°
Relative error

0
K=10 K=2 K=5 K=10

K=2 K=

(a) LS, D=5 (b) LS, D =10 (c) MLE, D=5

Figure: Estimation errors of impact functions obtained by various methods.
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Applications to Cold-Start of Recommendation Systems

Given users’ buying-and-rating behaviors (< 3) from January 2014 to April
2014 (Amazon product data), we aim to predict (recommend) items for
them. Because during this period only one or two buying behaviors
happened, this is a typical cold-start problem.

dhoce = argmax > | . 3dg exp(—w(t = t;)). (15)

Table: Summary of the performance for various methods.

Method MostPopular BPR FPMC Multi-source+MHP | Superposition+HP
Metric PON RON F;ON | PGN RGN F;ON | PGN ROGN F;ON | PGN RGN F OGN | PGN ROGN FON
Baby [0.145 0.726 0.242 | 0.306 1.532 0.511 | 0.484 2.419 0.806 | 0.339 1.694 0.565 | 0.306 1.532 0.511
Top5 |Garden| 0.277 1.385 0.462 | 0.646 3.231 1.077 | 0.277 1.385 0.462 | 0.739 3.692 1.231 | 1.046 5.231 1.744
Pet (0.517 2.585 0.862 | 0.526 2.632 0.877 | 0.517 2.585 0.862 | 0.780 3.900 1.300 | 0.864 4.323 1.441
Baby [0.234 2.339 0.425 | 0.379 3.790 0.689 | 0.307 3.065 0.557 | 0.218 2.177 0.396 | 0.282 2.822 0.513
Top10|Garden| 0.246 2.462 0.448 | 0.431 4.308 0.783 | 0.308 3.077 0.559 | 0.646 6.461 1.174 | 0.800 8.000 1.454
Pet |0.371 3.712 0.675 | 0.428 4.276 0.778 | 0.470 4.700 0.854 | 0.549 5.498 1.000 | 0.630 6.297 1.145
Baby |0.335 6.694 0.638 | 0.294 5.887 0.561 | 0.339 6.774 0.645 | 0.194 3.871 0.369 | 0.254 5.081 0.484
Top20|Garden| 0.369 7.385 0.703 | 0.431 8.615 0.821 | 0.300 6.000 0.571 | 0.439 8.769 0.835 | 0.508 10.154 0.967
Pet [0.374 7.472 0.712 | 0.465 9.305 0.886 | 0.371 7.425 0.707 | 0.338 6.767 0.645 | 0.489 9.774 0.931
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THAP: Package Architecture

THAP: A toolkit of Hawkes processes
|

m Data = Simulation I— Model Visualization

Thinning methods I —| Parametric Hawkes | Data statistics

Branch clustering | | Nonparametric Intensity plot
Hawkes
Basis representation Impact function plot
— Help — Analysis Ordinary differential equation
Time series-based method Granger causality

Variants of Hawkes Clustering structure

Maximum likelihood

- Mixture of Hawkes
Handbook of the tool Cumulants estimation
- Time-varying Hawkes Learning result plot
Clustering structure

Model-based methods

Prediction result plot

Feature-based methods
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Functions and Applications
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Figure: Visualization of typical functions achieved by THAP
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Comparisons with existing toolkits

Table: Models and algorithms of Hawkes processes in different toolkits.

Model Type Parametric Nonparametric
Impact function Exponential | Gaussian | Smooth | Discrete
Simulator Branch clustering *H& K& *&
(Fast) Thinning *dhbd Kk hd hdhd
MLE(+Regularizer) b d LY Yhd Yhh
Learning MLE + ODE *hd *hh *dhd *hh
Least-squares * *
Granger causality b [T K hd Kb [
Analysis Mixture model * * *
Distance metric * * * *
Time-Varying HP K& K& * &

* = Proposed THAP [Xu and Zha(2017)b]

¢ = R-hawkes [Da Fonseca and Zaatour(2014)]
B = pyhawkes [Linderman and Adams(2014)]
& = PtPack [Du(2016)]

& = tick [Bacry et al.(2017)]
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@ Hawkes process is a powerful tool to capture the time-dependent
mechanism hidden in real-world data

@ Robust learning from imperfect (real-world) observations is an
important issue. Data-based solutions have potentials to suppress,
even solve it.

@ A Matlab-based toolkit for learning Hawkes processes is developed for
the education and the research in the field of statistical machine
learning.

o Link of THAP:
https://github.com/HongtengXu/Hawkes-Process-Toolkit

@ Homepage:
https://sites.google.com/view/hongtengxu
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The End
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