

OAT-FM: Improved Flow Matching via Optimal Acceleration Transport

Hongteng Xu

Gaoling School of Artificial Intelligence, Renmin University of China

Jan. 23, 2026

Distribution Comparison and Transformation: Key Learning Tasks

Shape Matching and Interpolation

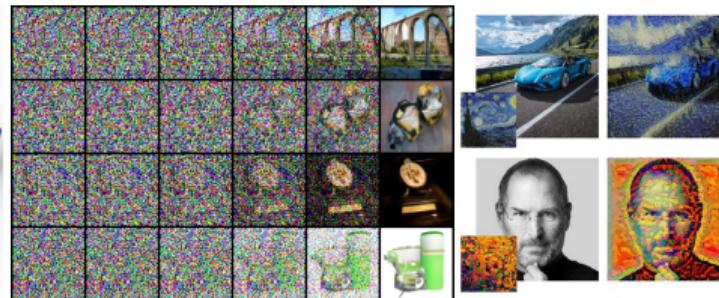
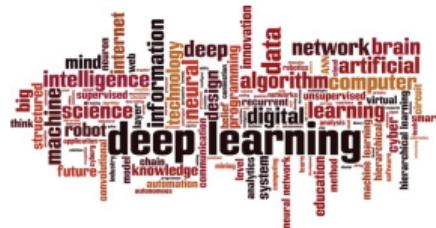


Image (Conditional) Generation



I want to have a pet, but I don't know whether to get a cat or a dog. Do you have any suggestions?

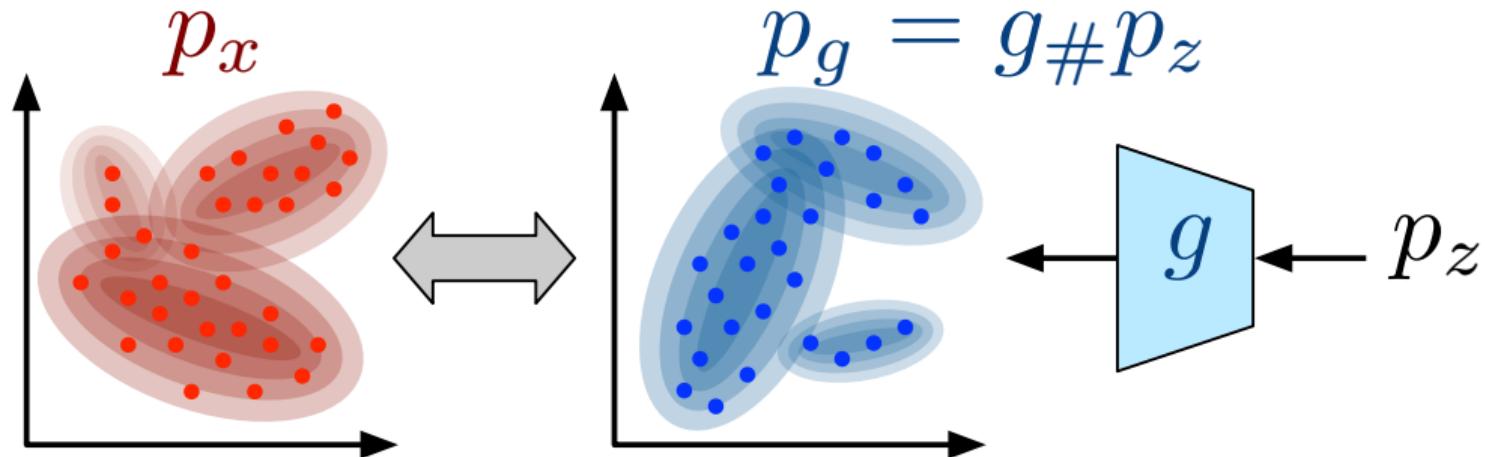
It really depends on your preferences, lifestyle, and the type of pet you want. If you want an independent pet and have a busy schedule, a cat is a good choice. If you prefer a companion and have a more active lifestyle, a dog might be a better fit. Have you considered your options?

Textual Data Comparison and Generation

- ▶ Clustering, Domain Adaptation, Representation Learning, Generative Modeling, ...
- ▶ Optimal transport: A solid solution to distribution comparison and transformation.

Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ToG, 2015.
 Flow Matching for Generative Modeling. ICLR, 2023. Large language diffusion models. NeurIPS, 2025.

Generative Modeling = Distribution Fitting and Matching



- ▶ $g : \mathcal{Z} \mapsto \mathcal{X}$ is the generator/decoder.
- ▶ p_z is the (predefined) latent distribution, and $p_g = g\#p_z$ is the model distribution.
- ▶ Learn g to fit data distribution p_x by p_g under a metric, and OT is a natural choice.

Outline

1. A Quick Review of Generative Modeling Based on Static OT

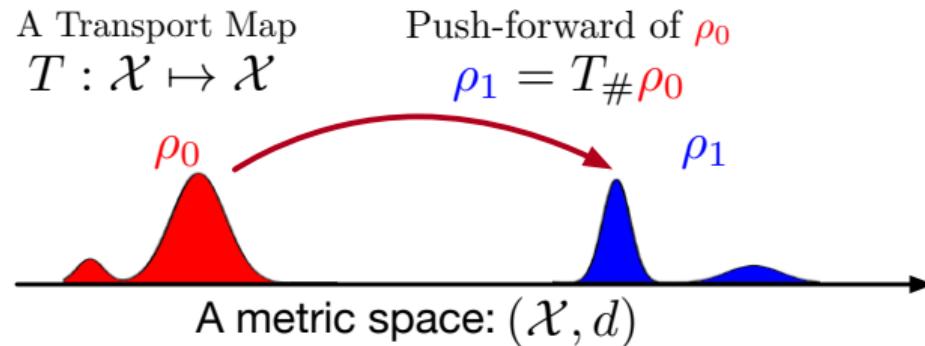
- ▶ Optimal transport problem and Wasserstein distance
- ▶ Wasserstein GAN (WGAN)
- ▶ Wasserstein Autoencoder (WAE)

2. Recent Generative Modeling Methods Based on Dynamic OT

- ▶ OT-based conditional flow matching
- ▶ Improved flow matching based on Optimal Acceleration Transport (OAT)

Origin: The Monge-form of the Optimal Transport Problem

Gaspard Monge (1746-1818)

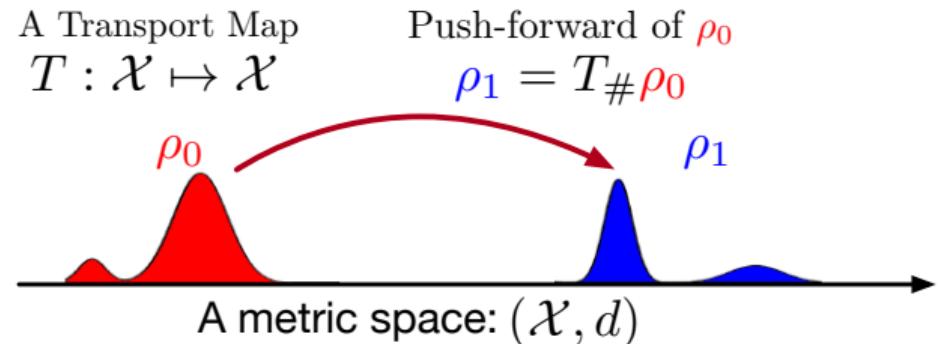


The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?

Origin: The Monge-form of the Optimal Transport Problem

Gaspard Monge (1746-1818)



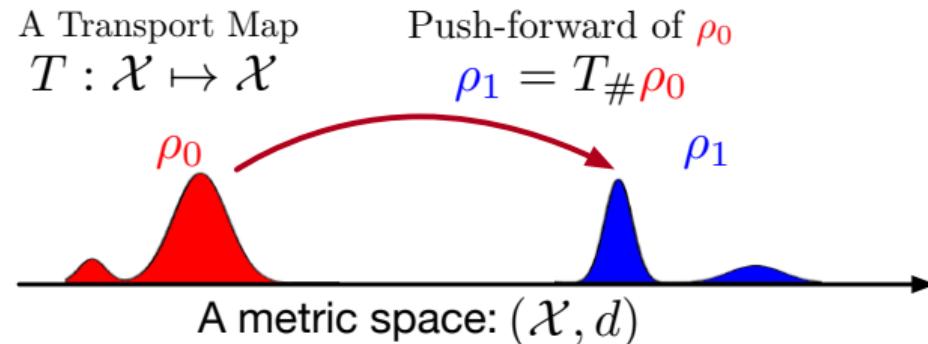
The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?

► The p -order Monge problem:

$$\mathcal{M}_p(\rho_0, \rho_1) := \left(\inf_T \int_{x \in \mathcal{X}} \underbrace{d^p(x, T(x))}_{\text{cost per sample}} \, d\rho_0(x) \right)^{1/p}, \quad \text{s.t.} \quad \underbrace{T_{\#}\rho_0}_{\text{measure preserving}} = \rho_1 \quad (1)$$

Origin: The Monge-form of the Optimal Transport Problem



Gaspard Monge (1746-1818)

The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?

► The p -order Monge problem:

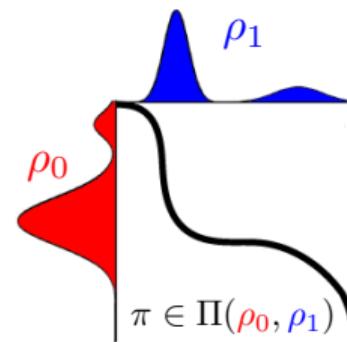
$$\mathcal{M}_p(\rho_0, \rho_1) := \left(\inf_T \int_{x \in \mathcal{X}} \underbrace{d^p(x, T(x))}_{\text{cost per sample}} \, d\rho_0(x) \right)^{1/p}, \quad \text{s.t.} \quad \underbrace{T_{\#}\rho_0 = \rho_1}_{\text{measure preserving}} \quad (1)$$

► Notably, the minimizer of (1) may not exist, e.g., ρ_0 is a Dirac measure while ρ_1 is not.

From Transport Map to Transport Plan: The Kantorovich-form of OT

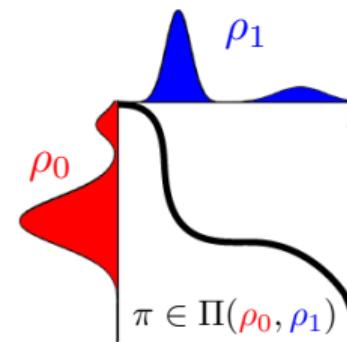
Leonid Kantorovich (1912-1986)

The Kantorovich-form of OT proposed in 1939



- ▶ Find a **transport plan/coupling** to minimize the expected cost.

From Transport Map to Transport Plan: The Kantorovich-form of OT



Leonid Kantorovich (1912-1986)

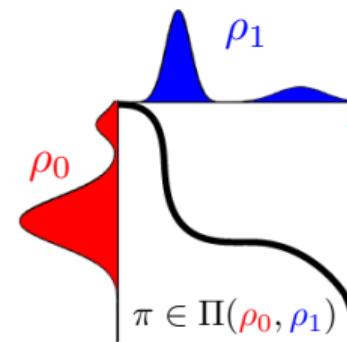
The Kantorovich-form of OT proposed in 1939

► Find a **transport plan/coupling** to minimize the expected cost.

$$\mathcal{W}_p(\rho_0, \rho_1) := \underbrace{\left(\inf_{\pi} \int_{(x,y) \in \mathcal{X}^2} d^p(x, y) \pi(x, y) \mathrm{d}x \mathrm{d}y \right)^{1/p}}_{\mathbb{E}_{x,y \sim \pi}[d^p(x,y)]} \quad (2)$$

$$s.t. \pi \in \Pi(\rho_0, \rho_1) = \left\{ \pi \geq 0 \mid \int_{\mathcal{X}} \pi(x, \cdot) \mathrm{d}x = \rho_1, \int_{\mathcal{X}} \pi(\cdot, y) \mathrm{d}y = \rho_0 \right\}.$$

From Transport Map to Transport Plan: The Kantorovich-form of OT



Leonid Kantorovich (1912-1986)

The Kantorovich-form of OT proposed in 1939

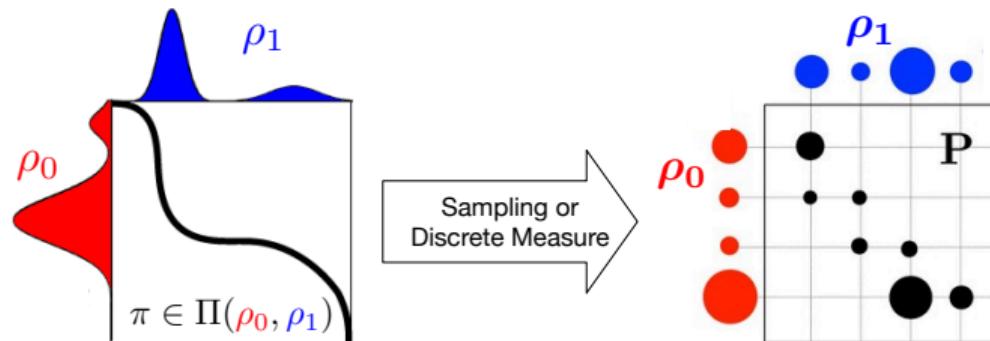
► Find a **transport plan/coupling** to minimize the expected cost.

$$\mathcal{W}_p(\rho_0, \rho_1) := \underbrace{\left(\inf_{\pi} \int_{(x,y) \in \mathcal{X}^2} d^p(x, y) \pi(x, y) \mathrm{d}x \mathrm{d}y \right)^{1/p}}_{\mathbb{E}_{x,y \sim \pi}[d^p(x,y)]} \quad (2)$$

$$s.t. \pi \in \Pi(\rho_0, \rho_1) = \left\{ \pi \geq 0 \mid \int_{\mathcal{X}} \pi(x, \cdot) \mathrm{d}x = \rho_1, \int_{\mathcal{X}} \pi(\cdot, y) \mathrm{d}y = \rho_0 \right\}.$$

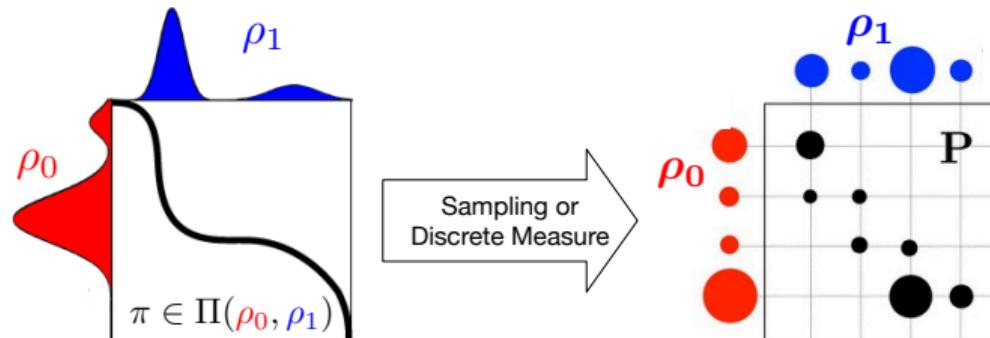
► When $d(x, y) = \|x - y\|_p$, \mathcal{W}_p is **p -order Wasserstein distance**.

From Transport Map to Transport Plan: The Kantorovich-form of OT



Given $\mathbf{X} = \{x_m\}_{m=1}^M$, $\rho_0 = \sum_{m=1}^M \rho_{0,m} \delta_{x_m}$ and $\mathbf{Y} = \{y_n\}_{n=1}^N$, $\rho_1 = \sum_{n=1}^N \rho_{1,n} \delta_{y_n}$,

From Transport Map to Transport Plan: The Kantorovich-form of OT

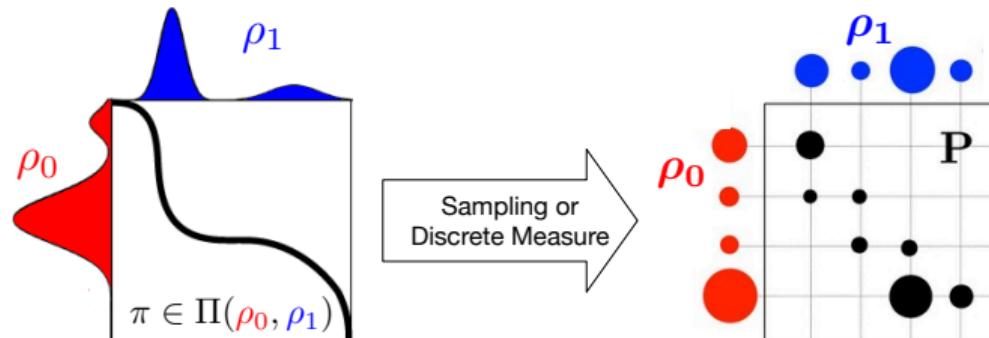


Given $\mathbf{X} = \{x_m\}_{m=1}^M$, $\rho_0 = \sum_{m=1}^M \rho_{0,m} \delta_{x_m}$ and $\mathbf{Y} = \{y_n\}_{n=1}^N$, $\rho_1 = \sum_{n=1}^N \rho_{1,n} \delta_{y_n}$,

$$\mathcal{W}_p(\mathbf{X}, \mathbf{Y}) := \left(\min_{\mathbf{P} \in \Pi(\rho_0, \rho_1)} \sum_{m=1}^M \sum_{n=1}^N d^p(x_m, y_n) p_{mn} \right)^{1/p} = \left(\min_{\mathbf{P} \in \Pi(\rho_0, \rho_1)} \langle \mathbf{D}, \mathbf{P} \rangle \right)^{1/p}, \quad (3)$$

where $\mathbf{D} = [d^p(x_m, y_n)]$, $\mathbf{P} = [p_{mn}]$, $\Pi(\rho_0, \rho_1) = \{\mathbf{P} > \mathbf{0} \mid \mathbf{P} \mathbf{1}_N = \rho_0, \mathbf{P}^\top \mathbf{1}_M = \rho_1\}$.

From Transport Map to Transport Plan: The Kantorovich-form of OT



Given $\mathbf{X} = \{x_m\}_{m=1}^M$, $\rho_0 = \sum_{m=1}^M \rho_{0,m} \delta_{x_m}$ and $\mathbf{Y} = \{y_n\}_{n=1}^N$, $\rho_1 = \sum_{n=1}^N \rho_{1,n} \delta_{y_n}$,

$$\mathcal{W}_p(\mathbf{X}, \mathbf{Y}) := \left(\min_{\mathbf{P} \in \Pi(\rho_0, \rho_1)} \sum_{m=1}^M \sum_{n=1}^N d^p(x_m, y_n) p_{mn} \right)^{1/p} = \left(\min_{\mathbf{P} \in \Pi(\rho_0, \rho_1)} \langle \mathbf{D}, \mathbf{P} \rangle \right)^{1/p}, \quad (3)$$

where $\mathbf{D} = [d^p(x_m, y_n)]$, $\mathbf{P} = [p_{mn}]$, $\Pi(\rho_0, \rho_1) = \{\mathbf{P} > \mathbf{0} \mid \mathbf{P} \mathbf{1}_N = \rho_0, \mathbf{P}^\top \mathbf{1}_M = \rho_1\}$.

- ▶ Applying the transport plan π/\mathbf{P} , we allow each sample $x \sim \rho_0$ to be split and mapped to multiple locations.
- ▶ If the optimal T^* exists, it determines an OT plan π^*/\mathbf{P}^* , so $\mathcal{W}_p \leq \mathcal{M}_p$.

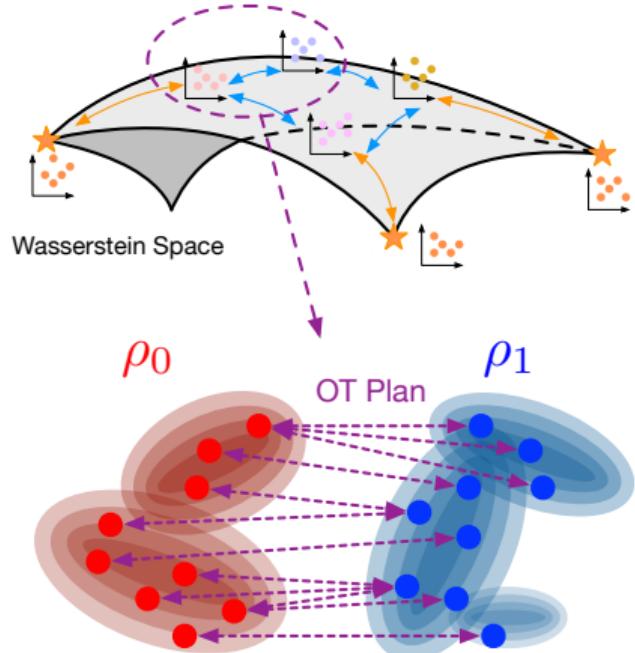
Advantages of Optimal Transport

A valid metric for probability measures

- ▶ $(\mathcal{P}(\mathcal{X}), \mathcal{W})$ is a metric space of probability measures defined in \mathcal{X} (i.e., Wasserstein space).
- ▶ Apply to distribution comparison, fitting, and interpolation

OT plan indicates sample pairs

- ▶ Apply to point cloud/shape/graph matching



Classic OT-based Generative Modeling Paradigms

Solution 1: Minimize \mathcal{W}_1 approximately in its dual-form or its SW surrogates:

- ▶ **WGAN**: Wasserstein generative adversarial networks. ICML, 2017.
- ▶ **WGAN-GP**: Improved training of Wasserstein GANs. NeurIPS, 2017.
- ▶ **Max-SWG**: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.
- ▶ **Amortized Max-SWG** Amortized projection optimization for sliced Wasserstein generative models. NeurIPS, 2022.

Classic OT-based Generative Modeling Paradigms

Solution 1: Minimize \mathcal{W}_1 approximately in its dual-form or its SW surrogates:

- ▶ **WGAN**: Wasserstein generative adversarial networks. ICML, 2017.
- ▶ **WGAN-GP**: Improved training of Wasserstein GANs. NeurIPS, 2017.
- ▶ **Max-SWG**: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.
- ▶ **Amortized Max-SWG**: Amortized projection optimization for sliced Wasserstein generative models. NeurIPS, 2022.

Solution 2: Minimize \mathcal{W}_2 approximately in its primal-form:

- ▶ **WAE**: Wasserstein Auto-Encoders. ICLR, 2018.
- ▶ **SinkDiff**: Learning generative models with Sinkhorn divergences. AISTATS, 2018.
- ▶ **SWAE**: Sliced Wasserstein auto-encoders. ICLR, 2018.
- ▶ **RAE**: Learning autoencoders with relational regularization. ICML, 2020.
- ▶ **Conditional Transport**: Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions. NeurIPS, 2021.

Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN): Fit the model distribution p_g by minimizing its 1-Wasserstein distance to the data distribution p_x **in the dual-form:**

$$\mathcal{W}_1(p_x, p_g) = \inf_{\pi \in \Pi(p_x, p_g)} \mathbb{E}_{(x, g(z)) \sim \pi} [\|x - g(z)\|_1] = \sup_{f \in L_1} \mathbb{E}_x[f(x)] - \mathbb{E}_z[f(g(z))] \quad (4)$$

Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN): Fit the model distribution p_g by minimizing its 1-Wasserstein distance to the data distribution p_x **in the dual-form:**

$$\mathcal{W}_1(p_x, p_g) = \inf_{\pi \in \Pi(p_x, p_g)} \mathbb{E}_{(x, g(z)) \sim \pi} [\|x - g(z)\|_1] = \sup_{f \in L_1} \mathbb{E}_x[f(x)] - \mathbb{E}_z[f(g(z))] \quad (4)$$

Therefore, we have

$$\inf_g \mathcal{W}_1(p_x, p_g) \iff \inf_g \sup_{f \in L_1} \mathbb{E}_x[f(x)] - \mathbb{E}_z[f(g(z))] \quad (5)$$

Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN): Fit the model distribution p_g by minimizing its 1-Wasserstein distance to the data distribution p_x **in the dual-form:**

$$\mathcal{W}_1(p_x, p_g) = \inf_{\pi \in \Pi(p_x, p_g)} \mathbb{E}_{(x, g(z)) \sim \pi} [\|x - g(z)\|_1] = \sup_{f \in L_1} \mathbb{E}_x[f(x)] - \mathbb{E}_z[f(g(z))] \quad (4)$$

Therefore, we have

$$\inf_g \mathcal{W}_1(p_x, p_g) \iff \inf_g \sup_{f \in L_1} \mathbb{E}_x[f(x)] - \mathbb{E}_z[f(g(z))] \quad (5)$$

Given a set of samples $X = \{x_n\}_{n=1}^N$ and a set of latent code $Z = \{z_n\}_{n=1}^N$, we have

$$\min_g \max_{f \in L_1} \sum_n [f(x_n)] - \sum_n [f(g(z_n))] \quad (6)$$

Wasserstein Autoencoder (WAE)

Wasserstein autoencoder (WAE): Fit the model distribution p_g by minimizing its W_2 distance to the data distribution p_x approximately.

$$\inf_g \mathcal{W}_2(p_x, p_g)$$

Wasserstein Autoencoder (WAE)

Wasserstein autoencoder (WAE): Fit the model distribution p_g by minimizing its W_2 distance to the data distribution p_x approximately.

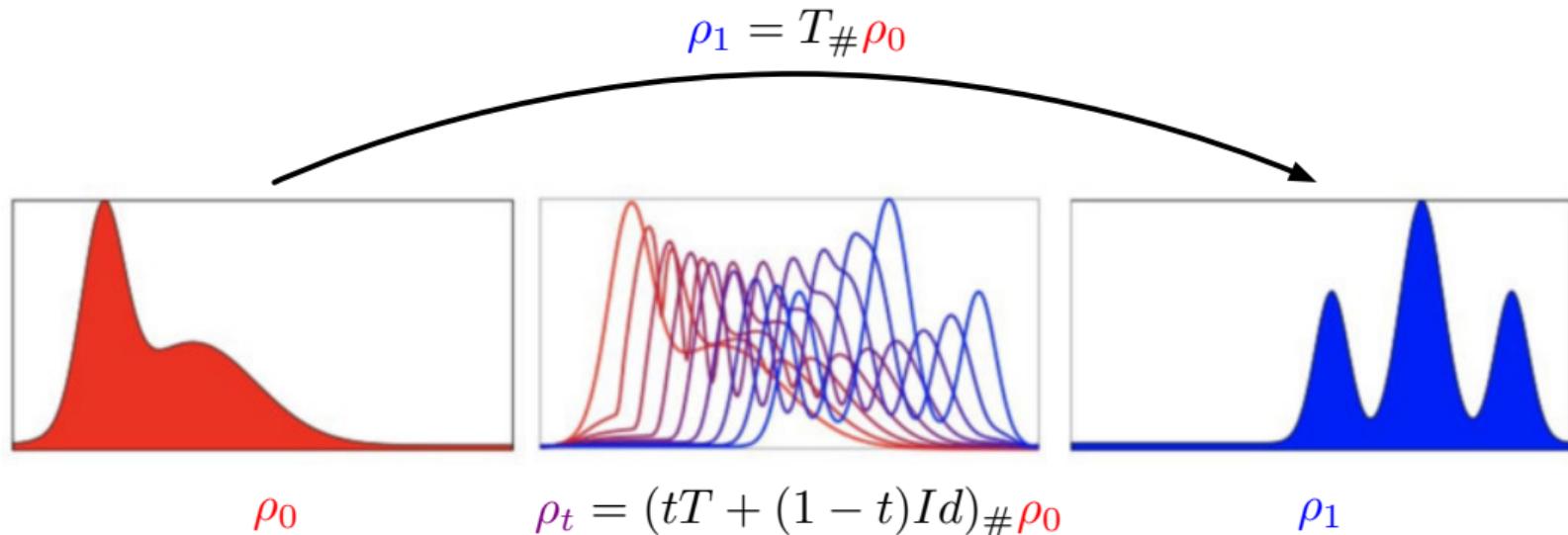
$$\inf_g \mathcal{W}_2(p_x, p_g) \approx \inf_{g,f} \underbrace{\mathbb{E}_{p_x} \mathbb{E}_{q_{z|x;f}} [d_x(x, g(z))]}_{\text{reconstruction loss}} + \underbrace{\gamma d(\mathbb{E}_{p_x} [q_{z|x;f}], p_z)}_{\text{distance(posterior, prior)}}, \quad (7)$$

- ▶ $q_{z|x;f}$ is the posterior of z given x , parameterized by an **encoder** $f : \mathcal{X} \mapsto \mathcal{Z}$.
- ▶ $q_{z;f} = \mathbb{E}_{p_x} [q_{z|x;f}]$ is the expectation of the posterior distributions.
- ▶ p_z is the prior of z .
- ▶ d : MMD, OT distances, even GAN

The above methods are based on the static definition of OT (i.e., Kantorovich-form OT). The dynamic-form OT triggers more recent generative modeling methods — flow matching.

The Dynamic Definition of OT

The displacement interpolation determined by transport map T :



The Dynamic Definition of OT

The displacement interpolation determined by transport map T :



What is the relationship between optimal transport and displacement interpolation?

The Dynamic Definition of OT

Definition 1 (Dynamic Formulation of Optimal Transport)

Let $\mathcal{X} \subset \mathbb{R}^d$ be the Euclidean sample space. For $\rho_0, \rho_1 \in \mathbb{P}(\mathcal{X})$, $\mathcal{W}_2^2(\rho_0, \rho_1)$ corresponds to seeking a unique least-kinetic-energy **flow (velocity field)** v :

$$\mathcal{W}_2^2(\rho_0, \rho_1) = \inf_{v(x,t)} \underbrace{\int_0^1 \int_{\mathcal{X}} \frac{1}{2} \rho(x,t) \|v(x,t)\|_2^2 dx dt}_{\text{Kinetic Energy}}, \quad \text{s.t. } \underbrace{\partial_t \rho + \nabla_x \cdot (v \rho)}_{\text{Continuity Equation}} = 0 \quad (8)$$

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.
Numerische Mathematik, 2000.

The Dynamic Definition of OT

Definition 1 (Dynamic Formulation of Optimal Transport)

Let $\mathcal{X} \subset \mathbb{R}^d$ be the Euclidean sample space. For $\rho_0, \rho_1 \in \mathbb{P}(\mathcal{X})$, $\mathcal{W}_2^2(\rho_0, \rho_1)$ corresponds to seeking a unique least-kinetic-energy **flow (velocity field)** v :

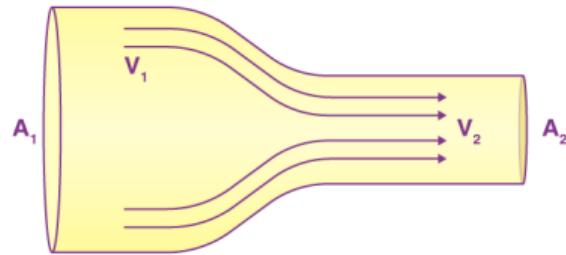
$$\mathcal{W}_2^2(\rho_0, \rho_1) = \inf_{v(x,t)} \underbrace{\int_0^1 \int_{\mathcal{X}} \frac{1}{2} \rho(x,t) \|v(x,t)\|_2^2 dx dt}_{\text{Kinetic Energy}}, \quad \text{s.t. } \underbrace{\partial_t \rho + \nabla_x \cdot (v \rho) = 0}_{\text{Continuity Equation}} \quad (8)$$

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

Numerische Mathematik, 2000.

- ▶ Solving the continuity equation with the **optimal flow** v^* leads to the **optimal displacement interpolation** between ρ_0 and ρ_1 .

Continuity Equation

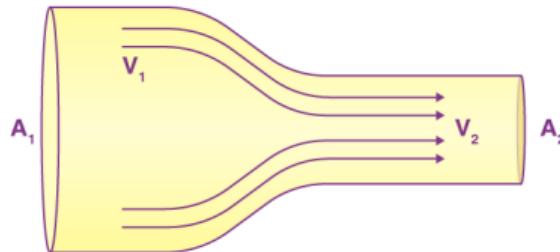


- Continuity equation describes **the time rate of change of the fluid density ($\partial_t \rho(x, t)$)** at a fixed point x in space.

$$\partial_t \rho + \nabla_x \cdot (v \rho) = 0 \quad (9)$$

- The rate equals to the rate of change of density by convection ($\nabla_x \cdot (v \rho)$).

Continuity Equation



- Continuity equation describes **the time rate of change of the fluid density ($\partial_t \rho(x, t)$)** at a fixed point x in space.

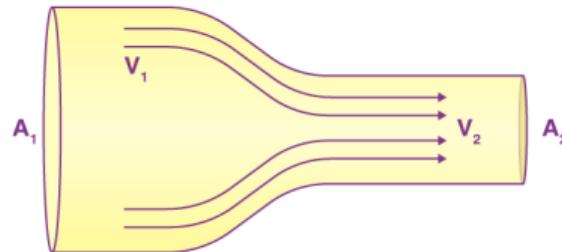
$$\partial_t \rho + \nabla_x \cdot (v \rho) = 0 \quad (9)$$

- The rate equals to **the rate of change of density by convection ($\nabla_x \cdot (v \rho)$)**.

Given a sample at time t , i.e., $x_t \sim \rho_t$, we have

$$\frac{dx_t}{dt} = v(x_t, t), \quad \underbrace{x_{t+\delta t} \approx x_t + \delta t \cdot v(x_t, t)}_{\text{Euler step}}. \quad (10)$$

Continuity Equation



- Continuity equation describes **the time rate of change of the fluid density ($\partial_t \rho(x, t)$)** at a fixed point x in space.

$$\partial_t \rho + \nabla_x \cdot (v \rho) = 0 \quad (9)$$

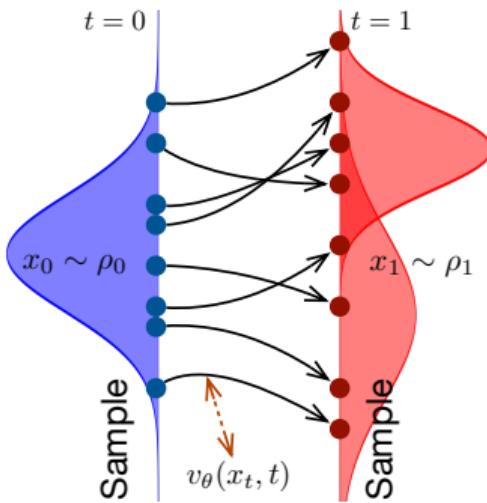
- The rate equals to **the rate of change of density by convection ($\nabla_x \cdot (v \rho)$)**.

Given a sample at time t , i.e., $x_t \sim \rho_t$, we have

$$\frac{dx_t}{dt} = v(x_t, t), \quad \underbrace{x_{t+\delta t} \approx x_t + \delta t \cdot v(x_t, t)}_{\text{Euler step}}. \quad (10)$$

Modeling the flow v leads to a new generative model strategy: Flow Matching.

Flow Matching (FM)

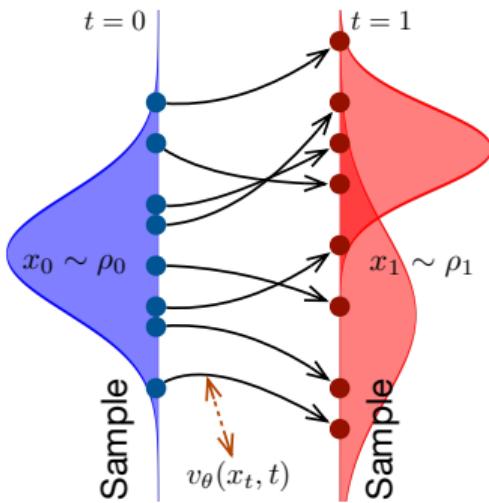


Flow Matching (FM) (Sample Space): Learn a velocity field $v_\theta(x, t)$ capturing the transport of probability mass from a prior ρ_0 to a data ρ_1 .

Flow Matching for Generative
Modeling. ICLR, 2023.

Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

Flow Matching (FM)



Flow Matching (FM) (Sample Space): Learn a velocity field $v_\theta(x, t)$ capturing the transport of probability mass from a prior ρ_0 to a data ρ_1 .

► **Conditional FM (CFM):** Set $\rho_0 = \mathcal{N}(0, 1)$, with an auxiliary variable $z \sim \pi$:

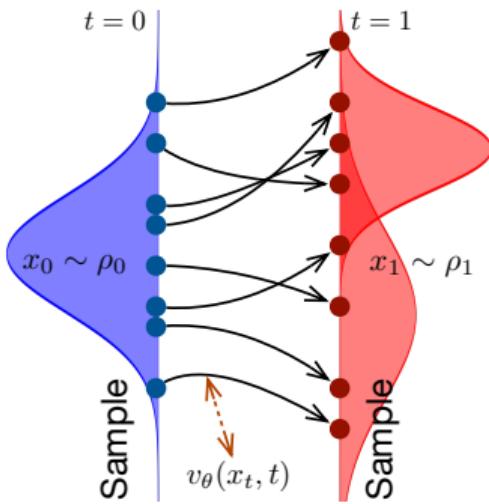
$$\min_\theta \mathbb{E}_{z \sim \pi, t, x} [\|v_\theta(x, t) - v_t(x|z)\|^2], \quad (11)$$

Generate new data by $\hat{x}_1 = x_0 + \int_0^1 v_\theta(x_t, t) dt$. In practice, $x_{t+\Delta t} = x_t + \Delta t \cdot v_\theta(x_t, t)$.

Flow Matching for Generative Modeling. ICLR, 2023.

Improving and generalizing flow-based generative models with minibatch optimal transport. TMLR, 2024.

Flow Matching (FM)



Flow Matching for Generative Modeling. ICLR, 2023.

Improving and generalizing flow-based generative models with minibatch optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a velocity field $v_\theta(x, t)$ capturing the transport of probability mass from a prior ρ_0 to a data ρ_1 .

- ▶ **Conditional FM (CFM):** Set $\rho_0 = \mathcal{N}(0, 1)$, with an auxiliary variable $z \sim \pi$:

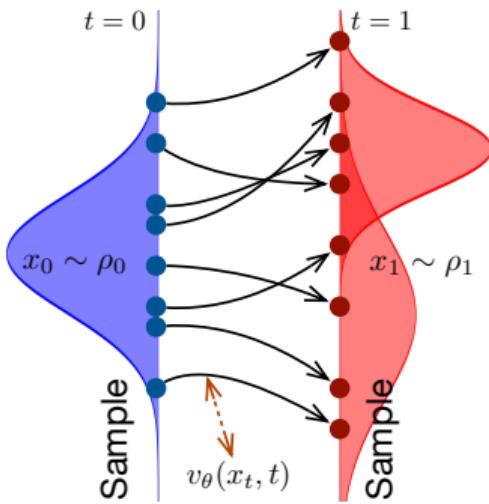
$$\min_\theta \mathbb{E}_{z \sim \pi, t, x} [\|v_\theta(x, t) - v_t(x|z)\|^2], \quad (11)$$

Generate new data by $\hat{x}_1 = x_0 + \int_0^1 v_\theta(x_t, t) dt$. In practice, $x_{t+\Delta t} = x_t + \Delta t \cdot v_\theta(x_t, t)$.

- ▶ **FM (Lipman et al.):**

$$p_t(x|z) = \mathcal{N}(tz, (t\sigma - t + 1)^2), \quad \pi = \rho_1$$

Flow Matching (FM)



Flow Matching for Generative Modeling. ICLR, 2023.

Improving and generalizing flow-based generative models with minibatch optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a velocity field $v_\theta(x, t)$ capturing the transport of probability mass from a prior ρ_0 to a data ρ_1 .

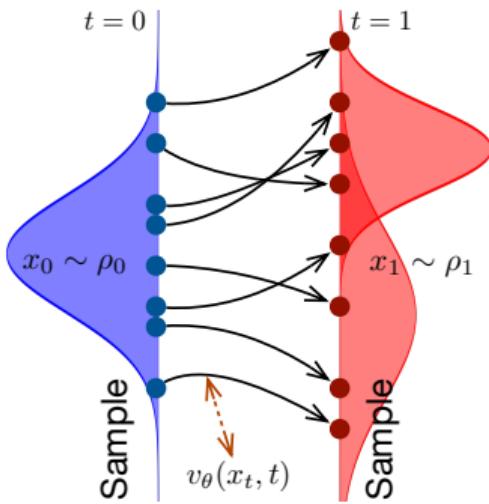
- ▶ **Conditional FM (CFM):** Set $\rho_0 = \mathcal{N}(0, 1)$, with an auxiliary variable $z \sim \pi$:

$$\min_\theta \mathbb{E}_{z \sim \pi, t, x} [\|v_\theta(x, t) - v_t(x|z)\|^2], \quad (11)$$

Generate new data by $\hat{x}_1 = x_0 + \int_0^1 v_\theta(x_t, t) dt$. In practice, $x_{t+\Delta t} = x_t + \Delta t \cdot v_\theta(x_t, t)$.

- ▶ **FM (Lipman et al.):** $p_t(x|z) = \mathcal{N}(tz, (t\sigma - t + 1)^2)$, $\pi = \rho_1$
- ▶ **I-CFM:** $x_t = (1 - t) \cdot x_0 + t \cdot x_1$, $\pi = \rho_0 \times \rho_1$

Flow Matching (FM)



Flow Matching for Generative Modeling. ICLR, 2023.

Improving and generalizing flow-based generative models with minibatch optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a velocity field $v_\theta(x, t)$ capturing the transport of probability mass from a prior ρ_0 to a data ρ_1 .

- ▶ **Conditional FM (CFM):** Set $\rho_0 = \mathcal{N}(0, 1)$, with an auxiliary variable $z \sim \pi$:

$$\min_\theta \mathbb{E}_{z \sim \pi, t, x} [\|v_\theta(x, t) - v_t(x|z)\|^2], \quad (11)$$

Generate new data by $\hat{x}_1 = x_0 + \int_0^1 v_\theta(x_t, t) dt$. In practice, $x_{t+\Delta t} = x_t + \Delta t \cdot v_\theta(x_t, t)$.

- ▶ **FM (Lipman et al.):** $p_t(x|z) = \mathcal{N}(tz, (t\sigma - t + 1)^2)$, $\pi = \rho_1$
- ▶ **I-CFM:** $x_t = (1 - t) \cdot x_0 + t \cdot x_1$, $\pi = \rho_0 \times \rho_1$
- ▶ **OT-CFM:** **Optimal Transport (OT)** perspective...

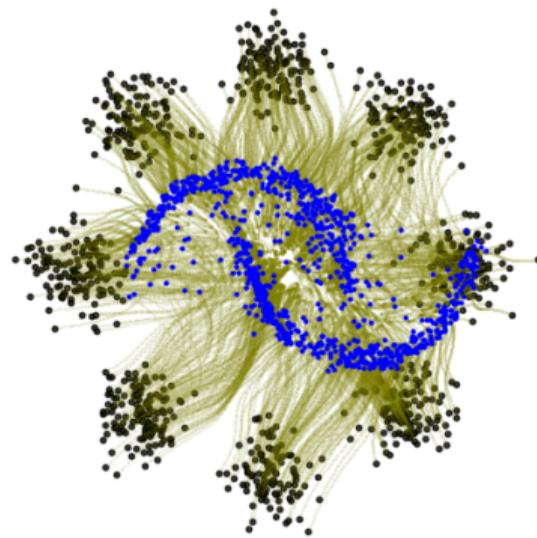
OT-CFM: Optimal Transport Perspective of FM

- ▶ **OT-CFM**: implements CFM by setting the distribution π in (11) as the OT plan corresponding to $\mathcal{W}_2^2(\rho_0, \rho_1)$ and $x_t = (1 - t) \cdot x_0 + t \cdot x_1$.

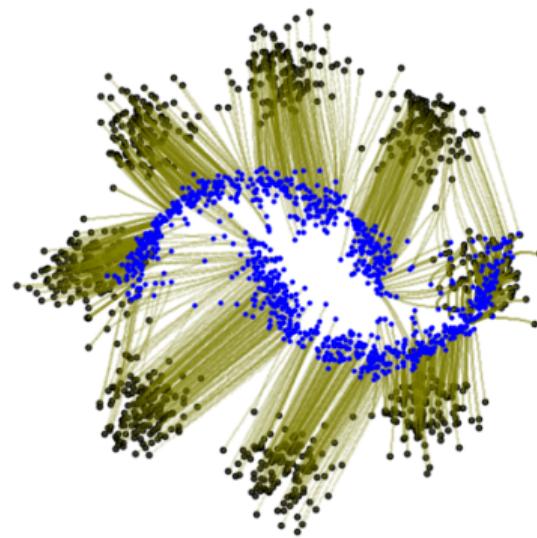
$$\begin{aligned} & \underbrace{\min_{\theta} \mathbb{E}_{(x_0, x_1) \sim \pi^*, t \sim \text{Unif}[0,1]} [\|v_{\theta}(x_t, t) - (x_1 - x_0)\|^2],}_{\text{Upper-level: } \mathcal{L}_{\text{CFM}}} \\ & \text{s.t. } \pi^* = \underbrace{\arg \min_{\pi \in \Pi(\rho_0, \rho_1)} \mathbb{E}_{\pi} [\|x_1 - x_0\|_2^2],}_{\text{Lower-level: } \mathcal{W}_2^2(\rho_0, \rho_1)} \end{aligned} \tag{12}$$

This is a **Bi-level Optimization Problem**.

OT-CFM: Optimal Transport Perspective of FM



(a) I-CFM, $\pi = \rho_0 \times \rho_1$



(b) OT-CFM, $\pi = \pi^*$

The objective of OT-CFM regresses $v_\theta(x_t, t)$ to the **constant velocity** $(x_1 - x_0)$, leading to the interpolation between ρ_0 and ρ_1 yielding OT, i.e., $\mathcal{W}_2(\rho_0, \rho_1)$.

OT-CFM: Optimal Transport Perspective of FM

Notably, constant velocity is sufficient but not necessary for straightening flows, which might introduce too strong inductive bias to the generative model.

Proposition 2 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the acceleration is everywhere parallel to the velocity. The classical (first-order) dynamical optimal transport is recovered as the special case with zero acceleration.

OT-CFM: Optimal Transport Perspective of FM

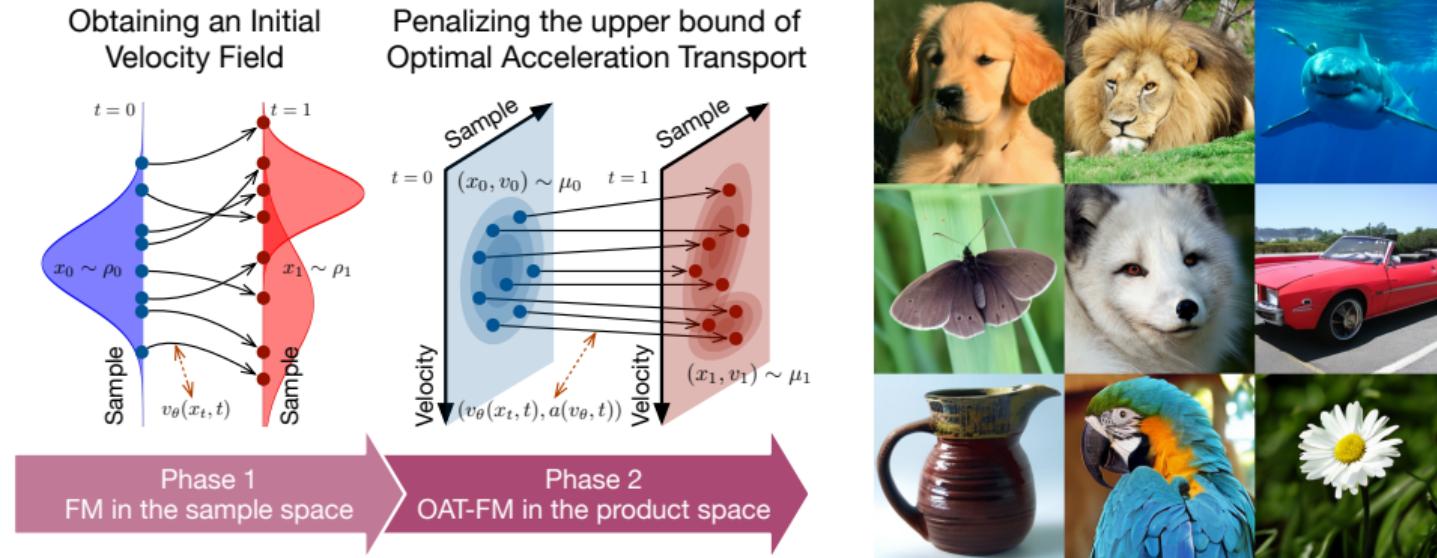
Notably, constant velocity is sufficient but not necessary for straightening flows, which might introduce too strong inductive bias to the generative model.

Proposition 2 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the acceleration is everywhere parallel to the velocity. The classical (first-order) dynamical optimal transport is recovered as the special case with zero acceleration.

How about pursue a flow with minimal acceleration instead of constant velocity?

OAT-FM: Two-Phase FM Based on Optimal Acceleration Transport



3) OAT-FM (Sample \times Velocity Space): A novel two-phase FM based on Optimal Acceleration Transport (OAT)

- ▶ Refine an arbitrary pre-trained flow/diffusion generator
- ▶ Minimize the acceleration transport between μ_0 and μ_1

Optimal Acceleration Transport (OAT)

Key Idea: For μ_0 and μ_1 in the **product space** $(\mathcal{X} \times \mathcal{V})$, find a flow that minimizes total squared acceleration under second-order dynamics.

Optimal Acceleration Transport (OAT)

Key Idea: For μ_0 and μ_1 in the **product space** $(\mathcal{X} \times \mathcal{V})$, find a flow that minimizes total squared acceleration under second-order dynamics.

Definition 3 (Dynamic Formulation of Optimal Acceleration Transport ¹)

Let $\mathcal{X} \subset \mathbb{R}^d$ be the sample space and $\mathcal{V} \subset \mathbb{R}^d$ the velocity space (by default $\mathcal{V} = \mathbb{R}^d$). For $\mu_0, \mu_1 \in \mathbb{P}(\mathcal{X} \times \mathcal{V})$, the optimal acceleration transport between them is defined as

$$\mathcal{A}_2^2(\mu_0, \mu_1) := \min_{\mu, a} \int_0^1 \int_{\mathcal{X} \times \mathcal{V}} \frac{1}{2} \mu(x, v, t) \|a(x, v, t)\|_2^2 dx dv dt, \quad (13)$$

subject to the **Vlasov equation** $\partial_t \mu + v \cdot \nabla_x \mu + \nabla_v \cdot (a \mu) = 0$, with boundary conditions $\mu(\cdot, \cdot, 0) = \mu_0$ and $\mu(\cdot, \cdot, 1) = \mu_1$. Here, $a : \mathcal{X} \times \mathcal{V} \times [0, 1] \mapsto \mathbb{R}^d$ is the acceleration field, and the Vlasov equation expresses conservation of mass in the product space.

¹ Benamou et al., 2019. Second-order models for optimal transport and cubic splines on the Wasserstein space

Optimal Acceleration Transport (OAT)

Definition 4 (Kantorovich formulation of OAT ^{2,3,4})

Given $z_0 = (x_0, v_0) \sim \mu_0$ and $z_1 = (x_1, v_1) \sim \mu_1$, the OAT problem is equivalent to solving an optimal coupling w.r.t. squared acceleration cost, i.e.,

$$\begin{aligned} & \mathcal{A}_2^2(\mu_0, \mu_1) \\ &= \min_{\pi \in \Pi(\mu_0, \mu_1)} \mathbb{E}_{(z_0, z_1) \sim \pi} [c_{\mathcal{A}}^2(z_0, z_1)] \\ &= \min_{\pi \in \Pi(\mu_0, \mu_1)} \mathbb{E}_{(z_0, z_1) \sim \pi} \left[12 \underbrace{\left\| \frac{x_1 - x_0}{T} - \frac{v_1 + v_0}{2} \right\|^2}_{\text{velocity alignment}} + \underbrace{\|v_1 - v_0\|^2}_{\text{acceleration penalty}} \right], \end{aligned} \tag{14}$$

where $T > 0$ denotes the time horizon between μ_0 and μ_1 , which is 1 in our case.

²Chen et al., 2018. Measure-valued spline curves: An optimal transport viewpoint

³Benamou et al., 2019. Second-order models for optimal transport and cubic splines on the Wasserstein space

⁴Brigati et al., 2025. Kinetic Optimal Transport (OTIKIN) – Part 1: Second-Order Discrepancies Between Probability Measures

OAT-FM: Refine Pre-trained v_θ Using OAT

Problem Setup:

- ▶ Trajectory endpoints: $z_0 = (x_0, v_\theta(x_0, 0))$ and $z_1 = (x_1, v_\theta(x_1, 1))$.
- ▶ Path x_t : Linear interpolation $x_t = (1 - t)x_0 + tx_1$.
- ▶ Model state: $z_t(\theta) = (x_t, v_\theta(x_t, t))$.

OAT-FM: Refine Pre-trained v_θ Using OAT

Problem Setup:

- Trajectory endpoints: $z_0 = (x_0, v_\theta(x_0, 0))$ and $z_1 = (x_1, v_\theta(x_1, 1))$.
- Path x_t : Linear interpolation $x_t = (1 - t)x_0 + tx_1$.
- Model state: $z_t(\theta) = (x_t, v_\theta(x_t, t))$.

Cost Function $\ell_{\mathcal{A}}$:

$$\ell_{\mathcal{A}}(z_0, z_1, t; \theta) = \alpha \underbrace{\left\| \frac{x_t - x_0}{t} - \frac{v_0 + v_\theta}{2} \right\|_2^2}_{\text{Velocity Alignment (0} \rightarrow t\text{)}} + (1 - \alpha) \underbrace{\|v_\theta - v_0\|_2^2}_{\text{Accel. Penalty (0} \rightarrow t\text{)}} \\ + \alpha \underbrace{\left\| \frac{x_1 - x_t}{1 - t} - \frac{v_\theta + v_1}{2} \right\|_2^2}_{\text{Velocity Alignment (t} \rightarrow 1\text{)}} + (1 - \alpha) \underbrace{\|v_1 - v_\theta\|_2^2}_{\text{Accel. Penalty (t} \rightarrow 1\text{)}} \quad (15)$$

Imitate the cost in OAT:

- Hyperparameter α balances *velocity alignment* vs. *acceleration minimization*.
- With $\alpha = \frac{12}{13}$, recovers OAT cost structure: $\ell_{\mathcal{A}} = \frac{1}{13}(c_{\mathcal{A}}^2(z_0, z_t) + c_{\mathcal{A}}^2(z_t, z_1))$.

OAT-FM: Refine Pre-trained v_θ Using OAT

OAT-FM Problem: We fine-tune the flow model by solving the following **Bi-level Optimization Problem**:

$$\begin{aligned} & \min_{\theta} \overbrace{\mathbb{E}_{(z_0, z_1) \sim \pi^*, t \sim \text{Unif}[0,1]} [\ell_{\mathcal{A}}(z_0, z_1, t; \theta)]}^{\text{Upper-level: } \mathcal{L}_{\text{OAT}}(\mu_0, \mu_1; \alpha)}, \\ & \text{s.t. } \pi^* = \overbrace{\arg \min_{\pi \in \Pi(\mu_0, \mu_1)} \mathbb{E}_{(z_0, z_1) \sim \pi} [c_{\mathcal{A}}^2(z_0, z_1)]}^{\text{Lower-level: } \mathcal{A}_2^2(\mu_0, \mu_1)}. \end{aligned} \tag{16}$$

- ▶ **Lower-level:** Finds the optimal coupling π^* that minimizes total acceleration in the product space.
- ▶ **Upper-level:** Aligns the learned flow with the OAT geodesics via $\ell_{\mathcal{A}}$.
- ▶ **Parameter α :** Balances *directional alignment* and *acceleration minimization*.

OAT-FM vs. OT-CFM

Component	OT-CFM	OAT-FM (Proposed)
Space	Sample Space \mathcal{X}	Product Space $\mathcal{X} \times \mathcal{V}$

OAT-FM vs. OT-CFM

Component	OT-CFM	OAT-FM (Proposed)
Space	Sample Space \mathcal{X}	Product Space $\mathcal{X} \times \mathcal{V}$
Dynamics	Continuity Equation $\partial_t \rho + \nabla_x \cdot (v \rho) = 0$	Vlasov Equation $\partial_t \mu + \nabla_x \cdot (v \mu) + \nabla_v \cdot (a \mu) = 0$

OAT-FM vs. OT-CFM

Component	OT-CFM	OAT-FM (Proposed)
Space	Sample Space \mathcal{X}	Product Space $\mathcal{X} \times \mathcal{V}$
Dynamics	Continuity Equation $\partial_t \rho + \nabla_x \cdot (v \rho) = 0$	Vlasov Equation $\partial_t \mu + \nabla_x \cdot (v \mu) + \nabla_v \cdot (a \mu) = 0$
Lower-level (Coupling)	Optimal Transport (OT) $\pi^* = \arg \min \mathbb{E}[\ x_1 - x_0\ ^2]$	Optimal Acceleration Transport (OAT) $\pi^* = \arg \min \mathbb{E}[c_{\mathcal{A}}^2(z_0, z_1)]$

OAT-FM vs. OT-CFM

Component	OT-CFM	OAT-FM (Proposed)
Space	Sample Space \mathcal{X}	Product Space $\mathcal{X} \times \mathcal{V}$
Dynamics	Continuity Equation $\partial_t \rho + \nabla_x \cdot (v \rho) = 0$	Vlasov Equation $\partial_t \mu + \nabla_x \cdot (v \mu) + \nabla_v \cdot (a \mu) = 0$
Lower-level (Coupling)	Optimal Transport (OT) $\pi^* = \arg \min \mathbb{E}[\ x_1 - x_0\ ^2]$	Optimal Acceleration Transport (OAT) $\pi^* = \arg \min \mathbb{E}[c_{\mathcal{A}}^2(z_0, z_1)]$
Upper-level (Objective)	Velocity Matching $\min \ v_\theta - (x_1 - x_0)\ ^2$	Velocity Alignment + Acceleration Minimization $\min \ell_{\mathcal{A}}(z_0, z_1, t; \theta)$

OAT-FM vs. OT-CFM

Component	OT-CFM	OAT-FM (Proposed)
Space	Sample Space \mathcal{X}	Product Space $\mathcal{X} \times \mathcal{V}$
Dynamics	Continuity Equation $\partial_t \rho + \nabla_x \cdot (v \rho) = 0$	Vlasov Equation $\partial_t \mu + \nabla_x \cdot (v \mu) + \nabla_v \cdot (a \mu) = 0$
Lower-level (Coupling)	Optimal Transport (OT) $\pi^* = \arg \min \mathbb{E}[\ x_1 - x_0\ ^2]$	Optimal Acceleration Transport (OAT) $\pi^* = \arg \min \mathbb{E}[c_{\mathcal{A}}^2(z_0, z_1)]$
Upper-level (Objective)	Velocity Matching $\min \ v_\theta - (x_1 - x_0)\ ^2$	Velocity Alignment + Acceleration Minimization $\min \ell_{\mathcal{A}}(z_0, z_1, t; \theta)$
Mechanism (Straightening)	Constant Velocity $\min \int_0^1 \ v_t\ ^2 dt \implies \ddot{x} = 0$	Minimal Acceleration (Smooth Velocity) $\min \int_0^1 \ a_t\ ^2 dt \implies \ddot{v} = 0$

Theoretical Guarantees of OAT-FM

Theorem 5 (OAT Bound of OAT-FM)

The OAT-FM objective $\mathcal{L}_{OAT}(\mu_0, \mu_1; \alpha)$ is lower-bounded by a scaled version of the true OAT second-order discrepancy, i.e.,

$$\mathcal{L}_{OAT}(\mu_0, \mu_1; \alpha) \geq \frac{2}{27} \mathcal{A}_2^2(\mu_0, \mu_1), \quad (17)$$

with $\alpha = 2/3$, and the equality held if and only if $v_1 = v_0$ for π^ -almost every pair.*

Theoretical Guarantees of OAT-FM

Theorem 5 (OAT Bound of OAT-FM)

The OAT-FM objective $\mathcal{L}_{OAT}(\mu_0, \mu_1; \alpha)$ is lower-bounded by a scaled version of the true OAT second-order discrepancy, i.e.,

$$\mathcal{L}_{OAT}(\mu_0, \mu_1; \alpha) \geq \frac{2}{27} \mathcal{A}_2^2(\mu_0, \mu_1), \quad (17)$$

with $\alpha = 2/3$, and the equality held if and only if $v_1 = v_0$ for π^* -almost every pair.

Theorem 6 (Straightening Flow via OAT)

Given two boundary distributions $\mu_0, \mu_1 \in \mathbb{P}(\mathcal{X} \times \mathcal{V})$, OAT admits an optimal coupling $\pi^* \in \Pi(\mu_0, \mu_1)$ for the static problem in (14). For every $(x_0, v_0), (x_1, v_1) \sim \pi^*$, the corresponding trajectory is straight iff v_0 and v_1 are collinear with $x_1 - x_0$. Otherwise, it bends exactly to match the endpoints' orthogonal components.

Efficient Implementation via Decomposable Structure

$$\begin{aligned} & \min_{\theta} \overbrace{\mathbb{E}_{(z_0, z_1) \sim \pi^*, t \sim \text{Unif}[0,1]} [\ell_{\mathcal{A}}(z_0, z_1, t; \theta)]}^{\text{Upper-level: } \mathcal{L}_{\text{OAT}}(\mu_0, \mu_1; \alpha)}, \\ & \text{s.t. } \pi^* = \overbrace{\arg \min_{\pi \in \Pi(\mu_0, \mu_1)} \mathbb{E}_{(z_0, z_1) \sim \pi} [c_{\mathcal{A}}^2(z_0, z_1)]}^{\text{Lower-level: } \mathcal{A}_2^2(\mu_0, \mu_1)}. \end{aligned} \tag{18}$$

The Challenge: Solving OAT requires the coupling π as a 4D tensor.

Efficient Implementation via Decomposable Structure

$$\begin{aligned} & \min_{\theta} \overbrace{\mathbb{E}_{(z_0, z_1) \sim \pi^*, t \sim \text{Unif}[0,1]} [\ell_{\mathcal{A}}(z_0, z_1, t; \theta)]}^{\text{Upper-level: } \mathcal{L}_{\text{OAT}}(\mu_0, \mu_1; \alpha)}, \\ & \text{s.t. } \pi^* = \overbrace{\arg \min_{\pi \in \Pi(\mu_0, \mu_1)} \mathbb{E}_{(z_0, z_1) \sim \pi} [c_{\mathcal{A}}^2(z_0, z_1)]}^{\text{Lower-level: } \mathcal{A}_2^2(\mu_0, \mu_1)}. \end{aligned} \tag{18}$$

The Challenge: Solving OAT requires the coupling π as a 4D tensor.

The Simplification (Decomposition): In FM, velocities are deterministic given samples: $v = v_{\theta}(x, t)$. This implies a *decomposable structure* for the coupling:

$$\pi(z_0, z_1) = \underbrace{\pi_x(x_0, x_1)}_{\text{Sample Coupling}} \cdot \underbrace{\delta_{v_{\theta}(x_0, 0)}(v_0) \cdot \delta_{v_{\theta}(x_1, 1)}(v_1)}_{\text{Deterministic Velocity Assignment}}. \tag{19}$$

Efficient Implementation via Decomposable Structure

The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT problem on samples:

$$\arg \min_{\pi_x \in \Pi(\rho_0, \rho_1)} \mathbb{E}_{(x_0, x_1) \sim \pi_x} \left[12 \|x_1 - x_0 - \bar{v}_{x_0, x_1}\|^2 + \|\tilde{v}_{x_0, x_1}\|_2^2 \right], \quad (20)$$

where ρ_0, ρ_1 are marginals on \mathcal{X} , and velocities are fixed by the current model:

- ▶ $\bar{v}_{x_0, x_1} = \frac{1}{2}(v_\theta(x_0, 0) + v_\theta(x_1, 1))$ (Mean Velocity)
- ▶ $\tilde{v}_{x_0, x_1} = v_\theta(x_1, 1) - v_\theta(x_0, 0)$ (Velocity Difference)

Efficient Implementation via Decomposable Structure

The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT problem on samples:

$$\arg \min_{\pi_x \in \Pi(\rho_0, \rho_1)} \mathbb{E}_{(x_0, x_1) \sim \pi_x} \left[12 \|x_1 - x_0 - \bar{v}_{x_0, x_1}\|^2 + \|\tilde{v}_{x_0, x_1}\|_2^2 \right], \quad (20)$$

where ρ_0, ρ_1 are marginals on \mathcal{X} , and velocities are fixed by the current model:

- ▶ $\bar{v}_{x_0, x_1} = \frac{1}{2}(v_\theta(x_0, 0) + v_\theta(x_1, 1))$ (Mean Velocity)
- ▶ $\tilde{v}_{x_0, x_1} = v_\theta(x_1, 1) - v_\theta(x_0, 0)$ (Velocity Difference)

Computational Complexity Analysis:

- ▶ **Exact OT (Linear Program):** $\Omega(B^3)$.
- ▶ **Sinkhorn Algorithm (Approximation):** $\Omega(B^2)$.
 - ▶ Solved efficiently via iterative matrix scaling (highly parallelizable).
 - ▶ Recovers exact OT solution when $\epsilon \rightarrow 0$.

Algorithm Scheme: OAT-FM Training Loop

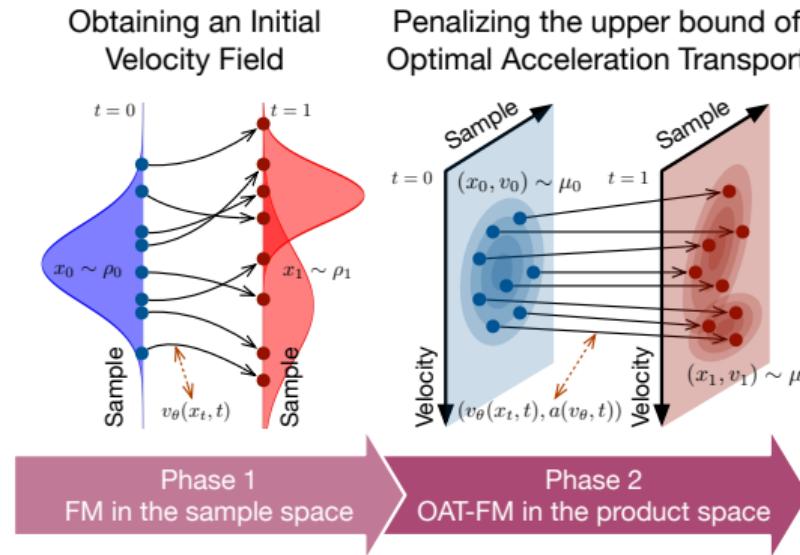
Algorithm 1 OAT-FM Training Procedure

Require: Pre-trained model v_{θ_0} , Dataset \mathcal{D} , Batch size B , EMA rate λ .

Ensure: Refined velocity field v_{θ} .

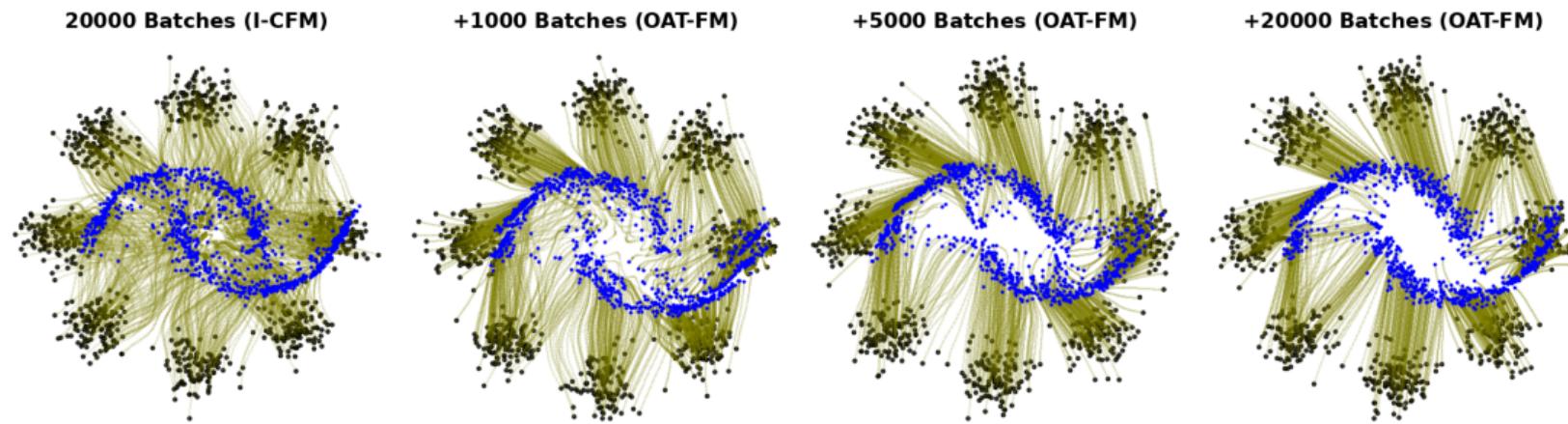
```
1: Initialize  $v_{\theta} \leftarrow v_{\theta_0}$ .
2: while training do
3:   // Step 1: Data Preparation
4:   Sample batch  $\{x_{1,i}\}_{i=1}^B \sim \mathcal{D}$ ,  $\{x_{0,i}\}_{i=1}^B \sim \mathcal{N}(0, I)$ ,  $t \sim \mathcal{U}[0, 1]$ .
5:   Estimate boundary velocities using current model:
      $\{v_{0,i} \leftarrow v_{\theta}(x_{0,i}, 0)\}_{i=1}^B$ ,  $\{v_{1,i} \leftarrow v_{\theta}(x_{1,i}, 1)\}_{i=1}^B$ .
6:   // Step 2: Lower-Level (Coupling)
7:   Compute optimal coupling  $\mathbf{T}^*$  by solving the reduced classic OT.
8:   Sample pairs  $(x_1, x_0) \sim \mathbf{T}^*$  to get aligned batches.
9:   // Step 3: Upper-Level (Optimization)
10:  Interpolate  $x_t \leftarrow (1 - t)x_0 + tx_1$ , predict  $v_t \leftarrow v_{\theta}(x_t, t)$ .
11:  Compute  $\mathcal{L}_{\text{OAT}}$  and update:  $\theta' \leftarrow \theta - \nabla_{\theta} \mathcal{L}_{\text{OAT}}$ .
12:  Update EMA:  $\theta \leftarrow \text{stopgrad}(\lambda\theta + (1 - \lambda)\theta')$ .
13: end while
```

Compare to Other 2-Phase FM Methods



- ▶ **ReFlow, Consistency Distillation:** Pursue straight flows and reduce sampling steps, but suffer from distribution drift inevitably.
- ▶ **OAT-FM:** Pursue smooth flows, may not reduce sampling steps but without distribution drift.

Application 1: Low-dimensional OT Benchmark



Experimental Setup:

- ▶ **Tasks:** 5 standard 2D distribution mapping tasks (e.g., 8gaussians \rightarrow moons).
- ▶ **Evaluation Metric:** 2-Wasserstein distance and Normalized Path Energy (NPE):

$$\text{NPE}(v_\theta) = \frac{|\text{PE}(v_\theta) - \mathcal{W}_2^2(\rho_0, \rho_1)|}{\mathcal{W}_2^2(\rho_0, \rho_1)}, \quad \text{with } \text{PE}(v_\theta) = \mathbb{E}_{x_0} \int_0^1 \|v_\theta(x_t, t)\|^2 dt. \quad (21)$$

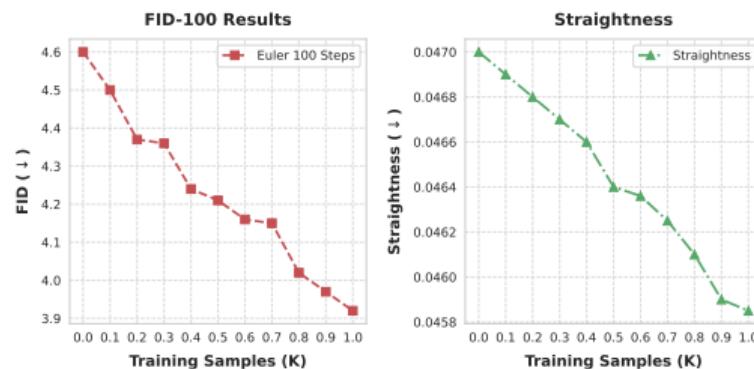
Application 1: Low-dimensional OT Benchmark

Task	$\mathcal{N} \rightarrow 8\text{gs}$		8gs \rightarrow moons		$\mathcal{N} \rightarrow \text{moons}$		$\mathcal{N} \rightarrow \text{scurve}$		moons \rightarrow 8gs	
	$\mathcal{W}_2^2 \downarrow$	NPE \downarrow	$\mathcal{W}_2^2 \downarrow$	NPE \downarrow	$\mathcal{W}_2^2 \downarrow$	NPE \downarrow	$\mathcal{W}_2^2 \downarrow$	NPE \downarrow	$\mathcal{W}_2^2 \downarrow$	NPE \downarrow
Method										
FM	0.58 ± 0.16	0.24 ± 0.01	5.80 ± 0.06	0.05 ± 0.02	0.15 ± 0.07	0.27 ± 0.05	0.81 ± 0.39	0.08 ± 0.04	7.39 ± 0.45	0.96 ± 0.05
+OAT-FM	0.31 ± 0.09	0.02 ± 0.01	0.08 ± 0.03	0.01 ± 0.01	0.08 ± 0.03	0.03 ± 0.01	0.90 ± 0.18	0.03 ± 0.02	0.28 ± 0.10	0.04 ± 0.02
I-CFM	0.45 ± 0.18	0.30 ± 0.01	0.18 ± 0.05	1.40 ± 0.05	0.11 ± 0.03	0.52 ± 0.06	1.16 ± 0.47	0.03 ± 0.03	0.74 ± 0.12	1.19 ± 0.06
+OAT-FM	0.32 ± 0.10	0.04 ± 0.01	0.15 ± 0.03	0.13 ± 0.01	0.07 ± 0.02	0.04 ± 0.04	1.12 ± 0.45	0.03 ± 0.02	0.50 ± 0.11	0.44 ± 0.03
VP-CFM	0.43 ± 0.14	0.24 ± 0.01	0.15 ± 0.02	1.24 ± 0.05	0.10 ± 0.03	0.31 ± 0.07	1.05 ± 0.41	0.22 ± 0.04	1.39 ± 0.35	1.22 ± 0.05
+OAT-FM	0.31 ± 0.12	0.03 ± 0.01	0.09 ± 0.01	0.02 ± 0.01	0.07 ± 0.02	0.04 ± 0.01	1.10 ± 0.34	0.03 ± 0.02	0.32 ± 0.10	0.10 ± 0.02
SB-CFM	0.51 ± 0.10	0.01 ± 0.01	0.13 ± 0.04	0.03 ± 0.01	0.08 ± 0.03	0.04 ± 0.03	0.79 ± 0.29	0.04 ± 0.02	0.36 ± 0.14	0.03 ± 0.02
+OAT-FM	0.34 ± 0.08	0.03 ± 0.01	0.07 ± 0.01	0.01 ± 0.01	0.09 ± 0.04	0.10 ± 0.04	0.80 ± 0.18	0.02 ± 0.02	0.25 ± 0.08	0.03 ± 0.02
OT-CFM	0.35 ± 0.09	0.01 ± 0.01	0.07 ± 0.02	0.01 ± 0.01	0.07 ± 0.02	0.04 ± 0.02	0.87 ± 0.33	0.03 ± 0.03	0.31 ± 0.10	0.02 ± 0.02
+OAT-FM	0.32 ± 0.10	0.04 ± 0.01	0.07 ± 0.01	0.01 ± 0.01	0.06 ± 0.01	0.04 ± 0.01	0.83 ± 0.34	0.04 ± 0.02	0.29 ± 0.09	0.10 ± 0.02

Application 2: Unconditional Image Generation (CIFAR-10)

Method	#Batch	NFE↓	FID↓
FM	400K	147	3.71
FM + OAT-FM	+1K	135	3.54
I-CFM	400K	149	3.67
I-CFM + OAT-FM	+1K	138	3.48
OT-CFM	400K	132	3.64
OT-CFM + OAT-FM	+1K	126	3.46
DDPM*		1K	3.17
Score SDE*		2K	2.38
LSGM*		147	2.10
2-ReFlow++*		35	2.30
EDM		35	1.96
EDM + OAT-FM	+12K	35	1.93

Lower-level Problem	Upper-level Problem	Phase-1 Method
		FM
		EDM
Without Phase-2 Training		3.71
\mathcal{W}_2^2 in (12)	\mathcal{L}_{CFM} in (12)	3.75
\mathcal{W}_2^2 in (12)	\mathcal{L}_{OAT} in (20)	3.55
\mathcal{A}_2^2 in (20)	\mathcal{L}_{CFM} in (12)	3.81
\mathcal{A}_2^2 in (20)	\mathcal{L}_{OAT} in (20)	3.54
		1.93



Application 3: Large-scale Conditional Image Generation

(a) SiT-XL (Left) v.s. + OAT-FM (Right)

(b) SiT-XL (Left) v.s. + OAT-FM (Right)

(c) SiT-XL (Left) v.s. + OAT-FM (Right)

(d) SiT-XL (Left) v.s. + OAT-FM (Right)

Application 3: Large-scale Conditional Image Generation

Method	#Epochs	FID↓	sFID↓	IS↑	P↑	R↑
BigGAN-deep		6.95	7.36	171.4	0.87	0.28
StyleGAN-XL		2.30	4.02	265.1	0.78	0.53
Mask-GIT		6.18	-	182.1	-	-
ADM-G/U		3.94	6.14	215.8	0.83	0.53
CDM		4.88	-	158.7	-	-
RIN		3.42	-	182.0	-	-
Simple Diffusion	U-ViT, L	2.77	-	211.8	-	-
VDM++		2.12	-	267.7	-	-
DiT-XL _{CFG=1.5}		2.27	4.60	278.2	0.83	0.57
SiT-XL _{CFG=1.5, Sampler=ODE}	1,400	2.11	4.62	256.0	0.81	0.61
SiT-XL _{CFG=1.5, Sampler=ODE} + OAT-FM	+5	2.05	4.62	259.4	0.80	0.61
SiT-XL _{CFG=2.5, Sampler=ODE}	1,400	6.91	6.42	391.5	0.89	0.47
SiT-XL _{CFG=2.5, Sampler=ODE} + OAT-FM	+5	6.57	5.98	394.8	0.89	0.49
SiT-XL _{CFG=1.5, Sampler=SDE}	1,400	2.05	4.50	269.6	0.82	0.59
SiT-XL _{CFG=1.5, Sampler=SDE} + OAT-FM	+5	2.00	4.43	275.1	0.82	0.59
SiT-XL _{CFG=2.5, Sampler=SDE}	1,400	7.75	6.64	405.0	0.90	0.45
SiT-XL _{CFG=2.5, Sampler=SDE} + OAT-FM	+5	7.44	5.77	409.9	0.90	0.46

Summary

- ▶ OT-CFM shows the potential dynamic OT in generative modeling.
- ▶ Propose OAT-FM to straighten flow trajectories by minimizing acceleration in the joint sample-velocity space.
- ▶ Introduce an efficient two-phase fine-tuning paradigm that improves pre-trained models without distribution drift.
- ▶ Achieve superior generation quality on high-dimensional tasks (e.g., CIFAR-10, ImageNet) with minimal training overhead.

Acknowledgment

Hongteng Xu
RUC

Angxiao Yue
KTH

Anqi Dong
RUC

- ▶ *Paper:* <https://arxiv.org/pdf/2509.24936>
- ▶ *Code:* <https://github.com/AngxiaoYue/OAT-FM>

Thank you!

<https://hongtengxu.github.io>

<https://github.com/HongtengXu>

hongtengxu@ruc.edu.cn

AAAI'22 Tutorial on Gromov-Wasserstein Learning

IJCAI'23 Tutorial on OT-based Machine Learning

AAAI'26 Tutorial on OT-based Machine Learning

<https://hongtengxu.github.io/talks.html>