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Distribution Comparison and Transformation: Key Learning Tasks

Shape Matching and Interpolation Image (Conditional) Generation

Textual Data Comparison and Generation

▶ Clustering, Domain Adaptation, Representation Learning, Generative Modeling, ...
▶ Optimal transport: A solid solution to distribution comparison and transformation.

Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ToG, 2015.
Flow Matching for Generative Modeling. ICLR, 2023. Large language diffusion models. NeurIPS, 2025. 2 / 38



Generative Modeling = Distribution Fitting and Matching
<latexit sha1_base64="BtvItvm3mt2L7QHMbQ7iJc57RLE=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0iqrfVW9OKxov2ANpTNdtsu3WzC7kYsoT/BiwdFvPqLvPlv3KYRVPTBwOO9GWbm+RFnSjvOh5VbWl5ZXcuvFzY2t7Z3irt7LRXGktAmCXkoOz5WlDNBm5ppTjuRpDjwOW37k8u5376jUrFQ3OppRL0AjwQbMoK1kW6i/n2/WHLsiuOeV0+QYzspUlJzyzXkZkoJMjT6xffeICRxQIUmHCvVdZ1IewmWmhFOZ4VerGiEyQSPaNdQgQOqvCQ9dYaOjDJAw1CaEhql6veJBAdKTQPfdAZYj9Vvby7+5XVjPax5CRNRrKkgi0XDmCMdovnfaMAkJZpPDcFEMnMrImMsMdEmnYIJ4etT9D9plW23aleuT0v1iyyOPBzAIRyDC2dQhytoQBMIjOABnuDZ4taj9WK9LlpzVjazDz9gvX0CrKmOFA==</latexit>px

<latexit sha1_base64="KF65uQNcH858yYG8vr6gHxGK+Hw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20oWy223bpZhN2J0IN/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omDjVjPsslrFuhdRwKRT3UaDkrURzGoWSN8PR7dRvPnJtRKwecJzwIKIDJfqCUbSSn3Szp0m3XHGr7gxkmXg5qUCOerf81enFLI24QiapMW3PTTDIqEbBJJ+UOqnhCWUjOuBtSxWNuAmy2bETcmKVHunH2pZCMlN/T2Q0MmYchbYzojg0i95U/M9rp9i/DjKhkhS5YvNF/VQSjMn0c9ITmjOUY0so08LeStiQasrQ5lOyIXiLLy+TxlnVu6xe3J9Xajd5HEU4gmM4BQ+uoAZ3UAcfGAh4hld4c5Tz4rw7H/PWgpPPHMIfOJ8/NkKO9w==</latexit>pz

<latexit sha1_base64="ndad8l2RPTIo2UrqU5XNbPN8Kms=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyyCqyFTnNouhKIblxXsA9phyKSZaWjmQZIR2qFf4saFIm79FHf+jelDUNEDl3s4515yc/yUM6kQ+jAKa+sbm1vF7dLO7t5+2Tw47MgkE4S2ScIT0fOxpJzFtK2Y4rSXCoojn9OuP76e+917KiRL4js1Sakb4TBmASNYackzy6mXh7PL0MsHlVnqTT2zgixUrTuoAZFV1a3qaOIgu1FrQNtCC1TACi3PfB8ME5JFNFaEYyn7NkqVm2OhGOF0VhpkkqaYjHFI+5rGOKLSzReHz+CpVoYwSISuWMGF+n0jx5GUk8jXkxFWI/nbm4t/ef1MBXU3Z3GaKRqT5UNBxqFK4DwFOGSCEsUnmmAimL4VkhEWmCidVUmH8PVT+D/pVC27Zjm355Xm1SqOIjgGJ+AM2OACNMENaIE2ICADD+AJPBtT49F4MV6XowVjtXMEfsB4+wRLapOJ</latexit>pg = g#pz

<latexit sha1_base64="lGeUwXO0ZAsyJbLMW0Kypi+o8KQ=">AAAB6HicdVDLSgMxFL1TX7W+qi7dBIvgasgUp7a7ohuXLdgHtEPJpJk2NvMgyQhl6Be4caGIWz/JnX9j+hBU9EDI4Zx7ufcePxFcaYw/rNza+sbmVn67sLO7t39QPDxqqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/uZ77nXsmFY+jWz1NmBeSUcQDTok2UnM0KJawjctVF9cQtsvmK7uGuNipVWrIsfECJVihMSi+94cxTUMWaSqIUj0HJ9rLiNScCjYr9FPFEkInZMR6hkYkZMrLFovO0JlRhiiIpXmRRgv1e0dGQqWmoW8qQ6LH6rc3F//yeqkOql7GoyTVLKLLQUEqkI7R/Go05JJRLaaGECq52RXRMZGEapNNwYTwdSn6n7TLtlOx3eZFqX61iiMPJ3AK5+DAJdThBhrQAgoMHuAJnq0769F6sV6XpTlr1XMMP2C9fQI+zo1C</latexit>g

▶ g : Z 7→ X is the generator/decoder.
▶ pz is the (predefined) latent distribution, and pg = g#pz is the model distribution.
▶ Learn g to fit data distribution px by pg under a metric, and OT is a natural

choice.
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Outline

1. A Quick Review of Generative Modeling Based on Static OT
▶ Optimal transport problem and Wasserstein distance
▶ Wasserstein GAN (WGAN)
▶ Wasserstein Autoencoder (WAE)

2. Recent Generative Modeling Methods Based on Dynamic OT
▶ OT-based conditional flow matching
▶ Improved flow matching based on Optimal Acceleration Transport (OAT)
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Origin: The Monge-form of the Optimal Transport Problem
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A Transport Map

A metric space:
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?

▶ The p-order Monge problem:

Mp(ρ0, ρ1) :=
(
inf
T

∫
x∈X

dp(x, T (x))︸ ︷︷ ︸
cost per sample

dρ0(x)
)1/p

, s.t. T#ρ0 = ρ1︸ ︷︷ ︸
measure preserving

(1)

▶ Notably, the minimizer of (1) may not exist, e.g., ρ0 is a Dirac measure while ρ1
is not.
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<latexit sha1_base64="Vj6HBvAJYEdZQ2OfNgzNpbKQKbk=">AAACUHicbZFNSwMxEIZn63f9qnr0EiyCBynZVbftQRC9eFSwKnSXJZumbTD7QZIVyrI/0Ys3f4cXD4qm2wpaHQh5eCfvZDIJU8GVxvjFqszNLywuLa9UV9fWNzZrW9u3KskkZR2aiETeh0QxwWPW0VwLdp9KRqJQsLvw4WKcv3tkUvEkvtGjlPkRGcS8zynRRgpqg9wri3TlIPRz3MAmXPdwDHYL2wba7ZbjtAtPDpPALtApuglyr17M+Not1zlxSl/TOSoLOM1j52jiw0VQq0+KY4z+gj2FOkzjKqg9e72EZhGLNRVEqa6NU+3nRGpOBSuqXqZYSugDGbCuwZhETPl52VOB9o3SQ/1EmhVrVKo/HTmJlBpFoTkZET1Us7mx+F+um+l+y895nGaaxXRyUT8TSCdoPF3U45JRLUYGCJXc9IrokEhCtfmDqhmCPfvkv3DrNGy34V4f18/Op+NYhl3YgwOwoQlncAlX0AEKT/AK7/BhPVtv1mfFmhz93mEHfkWl+gXrNqyv</latexit>

ω1 = T#ω0

<latexit sha1_base64="HtKeDgV1c+hCoz54Rc4OUfAYI2s="></latexit>

Push-forward of ω0
<latexit sha1_base64="Q6/YMp5rgjKuHi7ezNXqFdMOdQ4=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8FQSkeqx6sWLUKFf0Iay2W7apZtN2J2IJfbgX/HiQRGv/g1v/hu3bQ7a+mDg8d4MM/P8WHANjvNt5ZaWV1bX8uuFjc2t7R17d6+ho0RRVqeRiFTLJ5oJLlkdOAjWihUjoS9Y0x9eT/zmPVOaR7IGo5h5IelLHnBKwEhd+6AD7AHSS1xTROo4UoBvSTzu2kWn5EyBF4mbkSLKUO3aX51eRJOQSaCCaN12nRi8lCjgVLBxoZNoFhM6JH3WNlSSkGkvnd4/xsdG6eEgUqYk4Kn6eyIlodaj0DedIYGBnvcm4n9eO4Hgwku5jBNgks4WBYnAEOFJGLjHFaMgRoYQqri5FdMBUYSCiaxgQnDnX14kjdOSWy6V786Klassjjw6REfoBLnoHFXQDaqiOqLoET2jV/RmPVkv1rv1MWvNWdnMPvoD6/MH+QOWFw==</latexit>

A Transport Map

A metric space:
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?
▶ The p-order Monge problem:

Mp(ρ0, ρ1) :=
(
inf
T

∫
x∈X

dp(x, T (x))︸ ︷︷ ︸
cost per sample

dρ0(x)
)1/p

, s.t. T#ρ0 = ρ1︸ ︷︷ ︸
measure preserving

(1)

▶ Notably, the minimizer of (1) may not exist, e.g., ρ0 is a Dirac measure while ρ1
is not.
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<latexit sha1_base64="WUis+rPIkpIO8Rfu9VMr1ishM90=">AAAB7XicdVBNSwMxEJ31s9avqkcvwSJ4KrtF1vZW9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5YcKZNq774aysrq1vbBa2its7u3v7pYPDtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr9zj1Vmklxa6YJDWI8EixiBBsrtftqLAfeoFR2K66F76OceDXXs6Rer1WrdeTNLdctwxLNQem9P5QkjakwhGOte56bmCDDyjDC6azYTzVNMJngEe1ZKnBMdZDNr52hU6sMUSSVLWHQXP0+keFY62kc2s4Ym7H+7eXiX14vNVEtyJhIUkMFWSyKUo6MRPnraMgUJYZPLcFEMXsrImOsMDE2oKIN4etT9D9pVyueX/FvzsuNy2UcBTiGEzgDDy6gAdfQhBYQuIMHeIJnRzqPzovzumhdcZYzR/ADztsnolGPMw==</latexit>ω1

<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0

<latexit sha1_base64="37ED01EMaIgXcJCDkA7G/dPRTlw="></latexit>

ω → !(ε0, ε1)

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939
▶ Find a transport plan/coupling to minimize the expected cost.

Wp(ρ0, ρ1) :=
(
inf
π

∫
(x,y)∈X 2

dp(x, y)π(x, y)dxdy︸ ︷︷ ︸
Ex,y∼π [dp(x,y)]

)1/p

s.t. π ∈ Π(ρ0, ρ1) =
{
π ≥ 0

∣∣∣ ∫
X
π(x, ·)dx = ρ1,

∫
X
π(·, y)dy = ρ0

}
.

(2)

▶ When d(x, y) = ‖x− y‖p, Wp is p-order Wasserstein distance.
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<latexit sha1_base64="WUis+rPIkpIO8Rfu9VMr1ishM90=">AAAB7XicdVBNSwMxEJ31s9avqkcvwSJ4KrtF1vZW9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5YcKZNq774aysrq1vbBa2its7u3v7pYPDtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr9zj1Vmklxa6YJDWI8EixiBBsrtftqLAfeoFR2K66F76OceDXXs6Rer1WrdeTNLdctwxLNQem9P5QkjakwhGOte56bmCDDyjDC6azYTzVNMJngEe1ZKnBMdZDNr52hU6sMUSSVLWHQXP0+keFY62kc2s4Ym7H+7eXiX14vNVEtyJhIUkMFWSyKUo6MRPnraMgUJYZPLcFEMXsrImOsMDE2oKIN4etT9D9pVyueX/FvzsuNy2UcBTiGEzgDDy6gAdfQhBYQuIMHeIJnRzqPzovzumhdcZYzR/ADztsnolGPMw==</latexit>ω1

<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0

<latexit sha1_base64="37ED01EMaIgXcJCDkA7G/dPRTlw="></latexit>
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∣∣∣ ∫
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6 / 38
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<latexit sha1_base64="WUis+rPIkpIO8Rfu9VMr1ishM90=">AAAB7XicdVBNSwMxEJ31s9avqkcvwSJ4KrtF1vZW9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5YcKZNq774aysrq1vbBa2its7u3v7pYPDtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr9zj1Vmklxa6YJDWI8EixiBBsrtftqLAfeoFR2K66F76OceDXXs6Rer1WrdeTNLdctwxLNQem9P5QkjakwhGOte56bmCDDyjDC6azYTzVNMJngEe1ZKnBMdZDNr52hU6sMUSSVLWHQXP0+keFY62kc2s4Ym7H+7eXiX14vNVEtyJhIUkMFWSyKUo6MRPnraMgUJYZPLcFEMXsrImOsMDE2oKIN4etT9D9pVyueX/FvzsuNy2UcBTiGEzgDDy6gAdfQhBYQuIMHeIJnRzqPzovzumhdcZYzR/ADztsnolGPMw==</latexit>ω1

<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0

<latexit sha1_base64="37ED01EMaIgXcJCDkA7G/dPRTlw="></latexit>
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inf
π

∫
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{
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∣∣∣ ∫
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▶ When d(x, y) = ‖x− y‖p, Wp is p-order Wasserstein distance.
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From Transport Map to Transport Plan: The Kantorovich-form of OT
<latexit sha1_base64="WUis+rPIkpIO8Rfu9VMr1ishM90=">AAAB7XicdVBNSwMxEJ31s9avqkcvwSJ4KrtF1vZW9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5YcKZNq774aysrq1vbBa2its7u3v7pYPDtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr9zj1Vmklxa6YJDWI8EixiBBsrtftqLAfeoFR2K66F76OceDXXs6Rer1WrdeTNLdctwxLNQem9P5QkjakwhGOte56bmCDDyjDC6azYTzVNMJngEe1ZKnBMdZDNr52hU6sMUSSVLWHQXP0+keFY62kc2s4Ym7H+7eXiX14vNVEtyJhIUkMFWSyKUo6MRPnraMgUJYZPLcFEMXsrImOsMDE2oKIN4etT9D9pVyueX/FvzsuNy2UcBTiGEzgDDy6gAdfQhBYQuIMHeIJnRzqPzovzumhdcZYzR/ADztsnolGPMw==</latexit>ω1

<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0

<latexit sha1_base64="37ED01EMaIgXcJCDkA7G/dPRTlw="></latexit>

ω → !(ε0, ε1)

Sampling or
Discrete Measure

<latexit sha1_base64="Ekz1oza5QvZzIybxLKNU5s5PwsE=">AAAB/HicdVDNS8MwHE3n15xf1R29BIfgaXTd7OZt6MXjBPcBaylplm1haVOSVChl/itePCji1T/Em/+N6TZBRR+EPN77/cjLC2JGpbKsD6Owtr6xuVXcLu3s7u0fmIdHPckTgUkXc8bFIECSMBqRrqKKkUEsCAoDRvrB7Cr3+3dESMqjW5XGxAvRJKJjipHSkm+W3YCzkUxDfWWumHLfmvtmxapetBz73IZW1bKadt3Jid1s2HVY00qOClih45vv7ojjJCSRwgxJOaxZsfIyJBTFjMxLbiJJjPAMTchQ0wiFRHrZIvwcnmplBMdc6BMpuFC/b2QolHk+PRkiNZW/vVz8yxsmatzyMhrFiSIRXj40ThhUHOZNwBEVBCuWaoKwoDorxFMkEFa6r5Iu4eun8H/Ss6s1p+rcNCrty1UdRXAMTsAZqIEmaINr0AFdgEEKHsATeDbujUfjxXhdjhaM1U4Z/IDx9gmtOZV3</latexit>ω0

<latexit sha1_base64="c4ro5G1//DrV5/Ji6wFOW3fvlZE=">AAAB/HicdVDNS8MwHE3n15xf1R29BIfgabRD6nYbevE4wX3AWkqapltY2pQkFUqZ/4oXD4p49Q/x5n9juk1Q0Qchj/d+P/LygpRRqSzrw6isrW9sblW3azu7e/sH5uHRQPJMYNLHnHExCpAkjCakr6hiZJQKguKAkWEwuyr94R0RkvLkVuUp8WI0SWhEMVJa8s26G3AWyjzWV+GKKfftuW82rKal4TiwJHbbsjXpdNqtVgfaC8uyGmCFnm++uyHHWUwShRmScmxbqfIKJBTFjMxrbiZJivAMTchY0wTFRHrFIvwcnmolhBEX+iQKLtTvGwWKZZlPT8ZITeVvrxT/8saZitpeQZM0UyTBy4eijEHFYdkEDKkgWLFcE4QF1VkhniKBsNJ91XQJXz+F/5NBq2k7TefmvNG9XNVRBcfgBJwBG1yALrgGPdAHGOTgATyBZ+PeeDRejNflaMVY7dTBDxhvn6MalXE=</latexit>ω1

Given X = {xm}Mm=1, ρ0 =
∑M

m=1 ρ0,mδxm and Y = {yn}Nn=1, ρ1 =
∑N

n=1 ρ1,nδyn ,

Wp(X,Y ) :=
(

min
P∈Π(ρ0,ρ1)

M∑
m=1

N∑
n=1

dp(xm, yn)pmn

)1/p
=

(
min

P∈Π(ρ0,ρ1)
〈D,P 〉

)1/p
, (3)

where D = [dp(xm, yn)], P = [pmn], Π(ρ0,ρ1) = {P > 0|P1N = ρ0,P
⊤1M = ρ1}.

▶ Applying the transport plan π/P , we allow each sample x ∼ ρ0 to be split and
mapped to multiple locations.

▶ If the optimal T ∗ exists, it determines an OT plan π∗/P ∗, so Wp ≤ Mp.
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<latexit sha1_base64="WUis+rPIkpIO8Rfu9VMr1ishM90=">AAAB7XicdVBNSwMxEJ31s9avqkcvwSJ4KrtF1vZW9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5YcKZNq774aysrq1vbBa2its7u3v7pYPDtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr9zj1Vmklxa6YJDWI8EixiBBsrtftqLAfeoFR2K66F76OceDXXs6Rer1WrdeTNLdctwxLNQem9P5QkjakwhGOte56bmCDDyjDC6azYTzVNMJngEe1ZKnBMdZDNr52hU6sMUSSVLWHQXP0+keFY62kc2s4Ym7H+7eXiX14vNVEtyJhIUkMFWSyKUo6MRPnraMgUJYZPLcFEMXsrImOsMDE2oKIN4etT9D9pVyueX/FvzsuNy2UcBTiGEzgDDy6gAdfQhBYQuIMHeIJnRzqPzovzumhdcZYzR/ADztsnolGPMw==</latexit>ω1

<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0

<latexit sha1_base64="37ED01EMaIgXcJCDkA7G/dPRTlw="></latexit>

ω → !(ε0, ε1)

Sampling or
Discrete Measure

<latexit sha1_base64="Ekz1oza5QvZzIybxLKNU5s5PwsE=">AAAB/HicdVDNS8MwHE3n15xf1R29BIfgaXTd7OZt6MXjBPcBaylplm1haVOSVChl/itePCji1T/Em/+N6TZBRR+EPN77/cjLC2JGpbKsD6Owtr6xuVXcLu3s7u0fmIdHPckTgUkXc8bFIECSMBqRrqKKkUEsCAoDRvrB7Cr3+3dESMqjW5XGxAvRJKJjipHSkm+W3YCzkUxDfWWumHLfmvtmxapetBz73IZW1bKadt3Jid1s2HVY00qOClih45vv7ojjJCSRwgxJOaxZsfIyJBTFjMxLbiJJjPAMTchQ0wiFRHrZIvwcnmplBMdc6BMpuFC/b2QolHk+PRkiNZW/vVz8yxsmatzyMhrFiSIRXj40ThhUHOZNwBEVBCuWaoKwoDorxFMkEFa6r5Iu4eun8H/Ss6s1p+rcNCrty1UdRXAMTsAZqIEmaINr0AFdgEEKHsATeDbujUfjxXhdjhaM1U4Z/IDx9gmtOZV3</latexit>ω0

<latexit sha1_base64="c4ro5G1//DrV5/Ji6wFOW3fvlZE=">AAAB/HicdVDNS8MwHE3n15xf1R29BIfgabRD6nYbevE4wX3AWkqapltY2pQkFUqZ/4oXD4p49Q/x5n9juk1Q0Qchj/d+P/LygpRRqSzrw6isrW9sblW3azu7e/sH5uHRQPJMYNLHnHExCpAkjCakr6hiZJQKguKAkWEwuyr94R0RkvLkVuUp8WI0SWhEMVJa8s26G3AWyjzWV+GKKfftuW82rKal4TiwJHbbsjXpdNqtVgfaC8uyGmCFnm++uyHHWUwShRmScmxbqfIKJBTFjMxrbiZJivAMTchY0wTFRHrFIvwcnmolhBEX+iQKLtTvGwWKZZlPT8ZITeVvrxT/8saZitpeQZM0UyTBy4eijEHFYdkEDKkgWLFcE4QF1VkhniKBsNJ91XQJXz+F/5NBq2k7TefmvNG9XNVRBcfgBJwBG1yALrgGPdAHGOTgATyBZ+PeeDRejNflaMVY7dTBDxhvn6MalXE=</latexit>ω1
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From Transport Map to Transport Plan: The Kantorovich-form of OT
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m=1 ρ0,mδxm and Y = {yn}Nn=1, ρ1 =
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n=1 ρ1,nδyn ,

Wp(X,Y ) :=
(

min
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M∑
m=1

N∑
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dp(xm, yn)pmn
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=

(
min

P∈Π(ρ0,ρ1)
〈D,P 〉

)1/p
, (3)

where D = [dp(xm, yn)], P = [pmn], Π(ρ0,ρ1) = {P > 0|P1N = ρ0,P
⊤1M = ρ1}.

▶ Applying the transport plan π/P , we allow each sample x ∼ ρ0 to be split and
mapped to multiple locations.

▶ If the optimal T ∗ exists, it determines an OT plan π∗/P ∗, so Wp ≤ Mp.
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Advantages of Optimal Transport

A valid metric for probability measures
▶ (P(X ),W) is a metric space of probability

measures defined in X (i.e., Wasserstein
space).

▶ Apply to distribution comparison, fitting, and
interpolation

OT plan indicates sample pairs
▶ Apply to point cloud/shape/graph matching
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Classic OT-based Generative Modeling Paradigms

Solution 1: Minimize W1 approximately in its dual-form or its SW surrogates:
▶ WGAN: Wasserstein generative adversarial networks. ICML, 2017.
▶ WGAN-GP: Improved training of Wasserstein GANs. NeurIPS, 2017.
▶ Max-SWG: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.
▶ Amortized Max-SWG Amortized projection optimization for sliced Wasserstein generative models.

NeurIPS, 2022.

Solution 2: Minimize W2 approximately in its primal-form:
▶ WAE: Wasserstein Auto-Encoders. ICLR, 2018.
▶ SinkDiff: Learning generative models with Sinkhorn divergences. AISTATS, 2018.
▶ SWAE: Sliced Wasserstein auto-encoders. ICLR, 2018.
▶ RAE: Learning autoencoders with relational regularization. ICML, 2020.
▶ Conditional Transport: Exploiting Chain Rule and Bayes’ Theorem to Compare Probability Distributions.

NeurIPS, 2021.
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Wasserstein Generative Adversarial Network (WGAN)
Wasserstein Generative Adversarial Network (WGAN): Fit the model distribution
pg by minimizing its 1-Wasserstein distance to the data distribution px in the
dual-form:

W1(px, pg) = inf
π∈Π(px,pg)

E(x,g(z))∼π[‖x− g(z)‖1] = sup
f∈L1

Ex[f(x)]− Ez[f(g(z))] (4)

Therefore, we have

inf
g
W1(px, pg) ⇐⇒ inf

g
sup
f∈L1

Ex[f(x)]− Ez[f(g(z))] (5)

Given a set of samples X = {xn}Nn=1 and a set of latent code Z = {zn}Nn=1, we have

min
g
max
f∈L1

∑
n

[f(xn)]−
∑
n

[f(g(zn))] (6)
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Wasserstein Autoencoder (WAE)

Wasserstein autoencoder (WAE): Fit the model distribution pg by minimizing its
W2 distance to the data distribution px approximately.

inf
g
W2(px, pg)

≈ inf
g,f

EpxEqz|x;f [dx(x, g(z))]︸ ︷︷ ︸
reconstruction loss

+ γd(

qz;f︷ ︸︸ ︷
Epx [qz|x;f ], pz)︸ ︷︷ ︸

distance(posterior, prior)

, (7)

▶ qz|x;f is the posterior of z given x, parameterized by an encoder f : X 7→ Z.
▶ qz;f = Epx [qz|x;f ] is the expectation of the posterior distributions.
▶ pz is the prior of z.
▶ d : MMD, OT distances, even GAN

11 / 38



Wasserstein Autoencoder (WAE)

Wasserstein autoencoder (WAE): Fit the model distribution pg by minimizing its
W2 distance to the data distribution px approximately.

inf
g
W2(px, pg) ≈ inf

g,f
EpxEqz|x;f [dx(x, g(z))]︸ ︷︷ ︸

reconstruction loss

+ γd(

qz;f︷ ︸︸ ︷
Epx [qz|x;f ], pz)︸ ︷︷ ︸

distance(posterior, prior)

, (7)

▶ qz|x;f is the posterior of z given x, parameterized by an encoder f : X 7→ Z.
▶ qz;f = Epx [qz|x;f ] is the expectation of the posterior distributions.
▶ pz is the prior of z.
▶ d : MMD, OT distances, even GAN

11 / 38



The above methods are based on the static
definition of OT (i.e., Kantorovich-form OT).
The dynamic-form OT triggers more recent
generative modeling methods — flow matching.
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The Dynamic Definition of OT
The displacement interpolation determined by transport map T :
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What is the relationship between optimal transport and displacement
interpolation?
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The Dynamic Definition of OT

Definition 1 (Dynamic Formulation of Optimal Transport)

Let X ⊂ Rd be the Euclidean sample space. For ρ0, ρ1 ∈ P(X ), W2
2 (ρ0, ρ1)

corresponds to seeking a unique least–kinetic–energy flow (velocity field) v:

W2
2 (ρ0, ρ1) = inf

v(x,t)

∫ 1

0

∫
X

1

2
ρ(x, t)‖v(x, t)‖22dxdt︸ ︷︷ ︸
Kinetic Energy

, s.t. ∂tρ+∇x ·
(
vρ

)
= 0︸ ︷︷ ︸

Continuity Equation

(8)

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.
Numerische Mathematik, 2000.

▶ Solving the continuity equation with the optimal flow v∗ leads to the optimal
displacement interpolation between ρ0 and ρ1.
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Continuity Equation

▶ Continuity equation describes the time rate of
change of the fluid density (∂tρ(x, t)) at a fixed
point x in space.

∂tρ+∇x ·
(
vρ

)
= 0 (9)

▶ The rate equals to the rate of change of density by
convection (∇x · (vρ)).

Given a sample at time t, i.e., xt ∼ ρt, we have

dxt
dt = v(xt, t), xt+δt ≈ xt + δt · v(xt, t)︸ ︷︷ ︸

Euler step

. (10)

Modeling the flow v leads to a new generative model strategy: Flow Matching.
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Flow Matching (FM)
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Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

Penalizing the upper bound of
Optimal Acceleration Transport
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(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.

▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with
an auxiliary variable z ∼ π:

minθ Ez∼π, t, x[‖vθ(x, t)− vt(x|z)‖2], (11)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).
▶ FM (Lipman et al.):

pt(x|z) = N
(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1

▶ OT-CFM: Optimal Transport (OT)
perspective...
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(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.
▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:

minθ Ez∼π, t, x[‖vθ(x, t)− vt(x|z)‖2], (11)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).

▶ FM (Lipman et al.):
pt(x|z) = N

(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1

▶ OT-CFM: Optimal Transport (OT)
perspective...
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t = 0
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t = 1
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t = 1
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vω(xt, t)
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(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.
▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:

minθ Ez∼π, t, x[‖vθ(x, t)− vt(x|z)‖2], (11)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).
▶ FM (Lipman et al.):

pt(x|z) = N
(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1

▶ OT-CFM: Optimal Transport (OT)
perspective...
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t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>
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<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0
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▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:
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Generate new data by x̂1 = x0 +
∫ 1
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Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.
▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:

minθ Ez∼π, t, x[‖vθ(x, t)− vt(x|z)‖2], (11)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).
▶ FM (Lipman et al.):

pt(x|z) = N
(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1

▶ OT-CFM: Optimal Transport (OT)
perspective...
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OT-CFM: Optimal Transport Perspective of FM

▶ OT-CFM: implements CFM by setting the distribution π in (11) as the OT plan
corresponding to W2

2 (ρ0, ρ1) and xt = (1− t) · x0 + t · x1.

min
θ

Upper-level: LCFM︷ ︸︸ ︷
E(x0,x1)∼π∗, t∼Unif[0,1][‖vθ(xt, t)− (x1 − x0)‖2],

s.t. π∗ =

Lower-level: W2
2 (ρ0,ρ1)︷ ︸︸ ︷

argmin
π∈Π(ρ0,ρ1)

Eπ[‖x1 − x0‖22],

(12)

This is a Bi-level Optimization Problem.
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OT-CFM: Optimal Transport Perspective of FM

(a) I-CFM, π = ρ0 × ρ1 (b) OT-CFM, π = π∗

The objective of OT-CFM regresses vθ(xt, t) to the constant velocity (x1 − x0),
leading to the interpolation between ρ0 and ρ1 yielding OT, i.e., W2(ρ0, ρ1).
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OT-CFM: Optimal Transport Perspective of FM

Notably, constant velocity is sufficient but not necessary for straightening flows,
which might introduce too strong inductive bias to the generative model.

Proposition 2 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the
acceleration is everywhere parallel to the velocity. The classical (first-order)
dynamical optimal transport is recovered as the special case with zero acceleration.

How about pursue a flow with minimal acceleration instead
of constant velocity?
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OAT-FM: Two-Phase FM Based on Optimal Acceleration Transport
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(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

3) OAT-FM (Sample × Velocity Space): A novel two-phase FM based on
Optimal Acceleration Transport (OAT)
▶ Refine an arbitrary pre-trained flow/diffusion generator
▶ Minimize the acceleration transport between µ0 and µ1

20 / 38



Optimal Acceleration Transport (OAT)
Key Idea: For µ0 and µ1 in the product space (X × V), find a flow that minimizes
total squared acceleration under second-order dynamics.

Definition 3 (Dynamic Formulation of Optimal Acceleration Transport 1)

Let X ⊂ Rd be the sample space and V ⊂ Rd the velocity space (by default V = Rd).
For µ0, µ1 ∈ P(X × V), the optimal acceleration transport between them is defined as

A2
2(µ0, µ1) := min

µ, a

∫ 1

0

∫
X×V

1

2
µ(x, v, t) ‖a(x, v, t)‖22 dxdv dt, (13)

subject to the Vlasov equation ∂tµ+ v · ∇xµ+∇v ·
(
aµ

)
= 0, with boundary

conditions µ(·, ·, 0) = µ0 and µ(·, ·, 1) = µ1. Here, a : X × V × [0, 1] 7→ Rd is the
acceleration field, and the Vlasov equation expresses conservation of mass in the
product space.
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Optimal Acceleration Transport (OAT)

Definition 4 (Kantorovich formulation of OAT 2,3,4)

Given z0 = (x0, v0) ∼ µ0 and z1 = (x1, v1) ∼ µ1, the OAT problem is equivalent to
solving an optimal coupling w.r.t. squared acceleration cost, i.e.,

A2
2(µ0, µ1)

= minπ∈Π(µ0,µ1) E(z0,z1)∼π[c
2
A(z0, z1)]

= minπ∈Π(µ0,µ1) E(z0,z1)∼π

[
12

∥∥∥x1 − x0
T

− v1 + v0
2

∥∥∥2︸ ︷︷ ︸
velocity alignment

+ ‖v1 − v0‖2︸ ︷︷ ︸
acceleration penalty

]
,

(14)

where T > 0 denotes the time horizon between µ0 and µ1, which is 1 in our case.

2Chen et al., 2018. Measure-valued spline curves: An optimal transport viewpoint
3Benamou et al., 2019. Second-order models for optimal transport and cubic splines on the Wasserstein space
4Brigati et al., 2025. Kinetic Optimal Transport (OTIKIN) – Part 1: Second-Order Discrepancies Between Probability Measures
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OAT-FM: Refine Pre-trained vθ Using OAT
Problem Setup:
▶ Trajectory endpoints: z0 = (x0, vθ(x0, 0)) and z1 = (x1, vθ(x1, 1)).
▶ Path xt: Linear interpolation xt = (1− t)x0 + tx1.
▶ Model state: zt(θ) = (xt, vθ(xt, t)).

Cost Function ℓA:

ℓA(z0, z1, t; θ) = α
∥∥∥xt − x0

t
− v0 + vθ

2

∥∥∥2
2︸ ︷︷ ︸

Velocity Alignment (0→t)

+(1− α) ‖vθ − v0‖22︸ ︷︷ ︸
Accel. Penalty (0→t)

+ α
∥∥∥x1 − xt

1− t
− vθ + v1

2

∥∥∥2
2︸ ︷︷ ︸

Velocity Alignment (t→1)

+(1− α) ‖v1 − vθ‖22︸ ︷︷ ︸
Accel. Penalty (t→1)

(15)

Imitate the cost in OAT:
▶ Hyperparameter α balances velocity alignment vs. acceleration minimization.
▶ With α = 12

13 , recovers OAT cost structure: ℓA = 1
13(c

2
A(z0, zt) + c2A(zt, z1)).
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OAT-FM: Refine Pre-trained vθ Using OAT
OAT-FM Problem: We fine-tune the flow model by solving the following Bi-level
Optimization Problem:

min
θ

Upper-level: LOAT(µ0,µ1;α)︷ ︸︸ ︷
E(z0,z1)∼π∗, t∼Unif[0,1][ℓA(z0, z1, t; θ)],

s.t. π∗ =

Lower-level: A2
2(µ0,µ1)︷ ︸︸ ︷

argmin
π∈Π(µ0,µ1)

E(z0,z1)∼π[c
2
A(z0, z1)] .

(16)

▶ Lower-level: Finds the optimal coupling π∗ that minimizes total acceleration in
the product space.

▶ Upper-level: Aligns the learned flow with the OAT geodesics via ℓA.
▶ Parameter α: Balances directional alignment and acceleration minimization.
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OAT-FM vs. OT-CFM

Component OT-CFM OAT-FM (Proposed)

Space Sample Space X Product Space X × V

Dynamics Continuity Equation Vlasov Equation

∂tρ+∇x · (vρ) = 0 ∂tµ+∇x · (vµ) +∇v · (aµ) = 0

Lower-level Optimal Transport (OT) Optimal Acceleration Transport (OAT)

(Coupling) π∗ = argminE[‖x1 − x0‖2] π∗ = argminE[c2A(z0, z1)]

Upper-level Velocity Matching Velocity Alignment + Acceleration Minimization

(Objective) min ‖vθ − (x1 − x0)‖2 min ℓA(z0, z1, t; θ)

Mechanism Constant Velocity Minimal Acceleration (Smooth Velocity)

(Straightening) min
∫ 1
0 ‖vt‖2dt =⇒ ẍ = 0 min

∫ 1
0 ‖at‖2dt =⇒ v̈ = 0
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Theoretical Guarantees of OAT-FM
Theorem 5 (OAT Bound of OAT-FM)

The OAT-FM objective LOAT(µ0, µ1; α) is lower-bounded by a scaled version of the
true OAT second-order discrepancy, i.e.,

LOAT(µ0, µ1; α) ≥
2

27
A2

2(µ0, µ1), (17)

with α = 2/3, and the equality held if and only if v1 = v0 for π∗-almost every pair.

Theorem 6 (Straightening Flow via OAT)

Given two boundary distributions µ0, µ1 ∈ P(X × V), OAT admits an optimal coupling
π∗ ∈ Π(µ0, µ1) for the static problem in (14). For every (x0, v0), (x1, v1) ∼ π∗, the
corresponding trajectory is straight iff v0 and v1 are collinear with x1 − x0. Otherwise,
it bends exactly to match the endpoints’ orthogonal components.

26 / 38



Theoretical Guarantees of OAT-FM
Theorem 5 (OAT Bound of OAT-FM)

The OAT-FM objective LOAT(µ0, µ1; α) is lower-bounded by a scaled version of the
true OAT second-order discrepancy, i.e.,

LOAT(µ0, µ1; α) ≥
2

27
A2

2(µ0, µ1), (17)

with α = 2/3, and the equality held if and only if v1 = v0 for π∗-almost every pair.

Theorem 6 (Straightening Flow via OAT)

Given two boundary distributions µ0, µ1 ∈ P(X × V), OAT admits an optimal coupling
π∗ ∈ Π(µ0, µ1) for the static problem in (14). For every (x0, v0), (x1, v1) ∼ π∗, the
corresponding trajectory is straight iff v0 and v1 are collinear with x1 − x0. Otherwise,
it bends exactly to match the endpoints’ orthogonal components.

26 / 38



Efficient Implementation via Decomposable Structure

min
θ

Upper-level: LOAT(µ0,µ1;α)︷ ︸︸ ︷
E(z0,z1)∼π∗, t∼Unif[0,1][ℓA(z0, z1, t; θ)],

s.t. π∗ =

Lower-level: A2
2(µ0,µ1)︷ ︸︸ ︷

argmin
π∈Π(µ0,µ1)

E(z0,z1)∼π[c
2
A(z0, z1)] .

(18)

The Challenge: Solving OAT requires the coupling π as a 4D tensor.

The Simplification (Decomposition): In FM, velocities are deterministic given
samples: v = vθ(x, t). This implies a decomposable structure for the coupling:

π(z0, z1) = πx(x0, x1)︸ ︷︷ ︸
Sample Coupling

· δvθ(x0,0)(v0) · δvθ(x1,1)(v1)︸ ︷︷ ︸
Deterministic Velocity Assignment

. (19)
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Efficient Implementation via Decomposable Structure
The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT
problem on samples:

argmin
πx∈Π(ρ0,ρ1)

E(x0,x1)∼πx

[
12‖x1 − x0 − v̄x0,x1‖2 + ‖ṽx0,x1‖22

]
, (20)

where ρ0, ρ1 are marginals on X , and velocities are fixed by the current model:
▶ v̄x0,x1 = 1

2(vθ(x0, 0) + vθ(x1, 1)) (Mean Velocity)
▶ ṽx0,x1 = vθ(x1, 1)− vθ(x0, 0) (Velocity Difference)

Computational Complexity Analysis:
▶ Exact OT (Linear Program): Ω(B3).
▶ Sinkhorn Algorithm (Approximation): Ω(B2).

▶ Solved efficiently via iterative matrix scaling (highly parallelizable).
▶ Recovers exact OT solution when ϵ → 0.
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Algorithm Scheme: OAT-FM Training Loop
Algorithm 1 OAT-FM Training Procedure
Require: Pre-trained model vθ0 , Dataset D, Batch size B, EMA rate λ.
Ensure: Refined velocity field vθ.
1: Initialize vθ ← vθ0 .
2: while training do
3: // Step 1: Data Preparation
4: Sample batch {x1,i}Bi=1 ∼ D, {x0,i}Bi=1 ∼ N (0, I), t ∼ U [0, 1].
5: Estimate boundary velocities using current model:

{v0,i ← vθ(x0,i, 0)}Bi=1, {v1,i ← vθ(x1,i, 1)}Bi=1.
6: // Step 2: Lower-Level (Coupling)
7: Compute optimal coupling T∗ by solving the reduced classic OT.
8: Sample pairs (x1, x0) ∼ T∗ to get aligned batches.
9: // Step 3: Upper-Level (Optimization)

10: Interpolate xt ← (1− t)x0 + tx1, predict vt ← vθ(xt, t).
11: Compute LOAT and update: θ′ ← θ −∇θLOAT.
12: Update EMA: θ ← stopgrad(λθ + (1− λ)θ′).
13: end while
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Compare to Other 2-Phase FM Methods
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Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

Penalizing the upper bound of
Optimal Acceleration Transport
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<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

▶ ReFlow, Consistency Distillation: Pursue straight flows and reduce sampling
steps, but suffer from distribution drift inevitably.

▶ OAT-FM: Pursue smooth flows, may not reduce sampling steps but without
distribution drift.
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Application 1: Low-dimensional OT Benchmark

Experimental Setup:
▶ Tasks: 5 standard 2D distribution mapping tasks (e.g., 8gaussians → moons).
▶ Evaluation Metric: 2-Wasserstein distance and Normalized Path Energy (NPE):

NPE(vθ) =
|PE(vθ)−W2

2 (ρ0, ρ1)|
W2

2 (ρ0, ρ1)
, with PE(vθ) = Ex0

∫ 1

0
‖vθ(xt, t)‖2dt. (21)
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Application 1: Low-dimensional OT Benchmark

Task N →8gs 8gs→moons N →moons N →scurve moons→8gs
Method W2

2 ↓ NPE↓ W2
2 ↓ NPE↓ W2

2 ↓ NPE↓ W2
2 ↓ NPE↓ W2

2 ↓ NPE↓
FM 0.58±0.16 0.24±0.01 5.80±0.06 0.05±0.02 0.15±0.07 0.27±0.05 0.81±0.39 0.08±0.04 7.39±0.45 0.96±0.05
+OAT-FM 0.31±0.09 0.02±0.01 0.08±0.03 0.01±0.01 0.08±0.03 0.03±0.01 0.90±0.18 0.03±0.02 0.28±0.10 0.04±0.02

I-CFM 0.45±0.18 0.30±0.01 0.18±0.05 1.40±0.05 0.11±0.03 0.52±0.06 1.16±0.47 0.03±0.03 0.74±0.12 1.19±0.06
+OAT-FM 0.32±0.10 0.04±0.01 0.15±0.03 0.13±0.01 0.07±0.02 0.04±0.04 1.12±0.45 0.03±0.02 0.50±0.11 0.44±0.03

VP-CFM 0.43±0.14 0.24±0.01 0.15±0.02 1.24±0.05 0.10±0.03 0.31±0.07 1.05±0.41 0.22±0.04 1.39±0.35 1.22±0.05
+OAT-FM 0.31±0.12 0.03±0.01 0.09±0.01 0.02±0.01 0.07±0.02 0.04±0.01 1.10±0.34 0.03±0.02 0.32±0.10 0.10±0.02

SB-CFM 0.51±0.10 0.01±0.01 0.13±0.04 0.03±0.01 0.08±0.03 0.04±0.03 0.79±0.29 0.04±0.02 0.36±0.14 0.03±0.02
+OAT-FM 0.34±0.08 0.03±0.01 0.07±0.01 0.01±0.01 0.09±0.04 0.10±0.04 0.80±0.18 0.02±0.02 0.25±0.08 0.03±0.02

OT-CFM 0.35±0.09 0.01±0.01 0.07±0.02 0.01±0.01 0.07±0.02 0.04±0.02 0.87±0.33 0.03±0.03 0.31±0.10 0.02±0.02
+OAT-FM 0.32±0.10 0.04±0.01 0.07±0.01 0.01±0.01 0.06±0.01 0.04±0.01 0.83±0.34 0.04±0.02 0.29±0.09 0.10±0.02
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Application 2: Unconditional Image Generation (CIFAR-10)

Method #Batch NFE↓ FID↓

FM 400K 147 3.71
FM + OAT-FM +1K 135 3.54

I-CFM 400K 149 3.67
I-CFM + OAT-FM +1K 138 3.48

OT-CFM 400K 132 3.64
OT-CFM + OAT-FM +1K 126 3.46

DDPM∗ 1K 3.17
Score SDE∗ 2K 2.38
LSGM∗ 147 2.10
2-ReFlow++∗ 35 2.30
EDM 35 1.96
EDM + OAT-FM +12K 35 1.93

Lower-level Upper-level Phase-1 Method
Problem Problem FM EDM
Without Phase-2 Training 3.71 1.96
W2

2 in (12) LCFM in (12) 3.75 8.77
W2

2 in (12) LOAT in (20) 3.55 8.68
A2

2 in (20) LCFM in (12) 3.81 1.95
A2

2 in (20) LOAT in (20) 3.54 1.93
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Application 3: Large-scale Conditional Image Generation

(a) SiT-XL (Left) v.s. + OAT-FM (Right) (b) SiT-XL (Left) v.s. + OAT-FM (Right)

(c) SiT-XL (Left) v.s. + OAT-FM (Right) (d) SiT-XL (Left) v.s. + OAT-FM (Right)

Figure 1: Visual comparison for SiT-XL vs. SiT-XL + OAT-FM (CFG=4.0).
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Application 3: Large-scale Conditional Image Generation
Method #Epochs FID↓ sFID↓ IS↑ P↑ R↑
BigGAN-deep 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL 2.30 4.02 265.1 0.78 0.53
Mask-GIT 6.18 - 182.1 - -
ADM-G/U 3.94 6.14 215.8 0.83 0.53
CDM 4.88 - 158.7 - -
RIN 3.42 - 182.0 - -
Simple DiffusionU-ViT, L 2.77 - 211.8 - -
VDM++ 2.12 - 267.7 - -
DiT-XLCFG=1.5 2.27 4.60 278.2 0.83 0.57
SiT-XLCFG=1.5, Sampler=ODE 1,400 2.11 4.62 256.0 0.81 0.61
SiT-XLCFG=1.5, Sampler=ODE + OAT-FM +5 2.05 4.62 259.4 0.80 0.61
SiT-XLCFG=2.5, Sampler=ODE 1,400 6.91 6.42 391.5 0.89 0.47
SiT-XLCFG=2.5, Sampler=ODE + OAT-FM +5 6.57 5.98 394.8 0.89 0.49
SiT-XLCFG=1.5, Sampler=SDE 1,400 2.05 4.50 269.6 0.82 0.59
SiT-XLCFG=1.5, Sampler=SDE + OAT-FM +5 2.00 4.43 275.1 0.82 0.59
SiT-XLCFG=2.5, Sampler=SDE 1,400 7.75 6.64 405.0 0.90 0.45
SiT-XLCFG=2.5, Sampler=SDE + OAT-FM +5 7.44 5.77 409.9 0.90 0.46
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Summary

▶ OT-CFM shows the potential dynamic OT in generative modeling.

▶ Propose OAT-FM to straighten flow trajectories by minimizing acceleration in the
joint sample-velocity space.

▶ Introduce an efficient two-phase fine-tuning paradigm that improves pre-trained
models without distribution drift.

▶ Achieve superior generation quality on high-dimensional tasks (e.g., CIFAR-10,
ImageNet) with minimal training overhead.
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