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Distribution Comparison and Transformation: Key Learmng Tasks

Shape Matching and Interpolation Image (Condltlonal) Generation
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Textual Data Comparison and Generation
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» Clustering, Domain Adaptation, Representation Learning, Generative Modeling,

» Optimal transport: A solid solution to distribution comparison and transformation.

Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ToG, 2015.
Flow Matching for Generative Modeling. ICLR, 2023. Large language diffusion models. NeurlPS, 2025.
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Generative Modeling = Distribution Fitting and Matching

Dz

&

>

» g:Z— X is the generator/decoder.
» p. is the (predefined) latent distribution, and p, = g#p. is the model distribution.

» Learn g to fit data distribution p, by p, under a metric, and OT is a natural
choice.
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Outline

1. A Quick Review of Generative Modeling Based on Static OT

» Optimal transport problem and Wasserstein distance
> Wasserstein GAN (WGAN)
> Wasserstein Autoencoder (WAE)

2. Recent Generative Modeling Methods Based on Dynamic OT

» OT-based conditional flow matching
» Improved flow matching based on Optimal Acceleration Transport (OAT)
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Origin: The Monge-form of the Optimal Transport Problem

A Transport Map Push-forward of pg
T: X — X P1 :ZZZZ;¢/)0

po " T~ P

A

A metric space: (X, d)
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?
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A Transport Map Push-forward of pg
T: X — X P1 ::iflsif)o

po "  ~

A

A metric space: (X, d)
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?
» The p-order Monge problem:

. 1/p
My(po. 1) = (inf / P T@) dpo@) o st Tw=p
T Jyex ~—~—— ——
cost per sample measure preserving

» Notably, the minimizer of (1) may not exist, e.g., po is a Dirac measure while p;
is not.
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From Transport Map to Transport Plan: The Kantorovich-form of OT

Po

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939

» Find a transport plan/coupling to minimize the expected cost.
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From Transport Map to Transport Plan: The Kantorovich-form of OT
P1

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939

» Find a transport plan/coupling to minimize the expected cost.

) 1/p
Wp(po, p1) i= (inf &z, y)m(z, y)dady)
T (wﬁ’/)eXQ

E. Wﬁp(w,y)} (2)
s.t. m e (po, p1) = 7r>0‘/ :pl,/ W(-,y}dy:pg}.
X
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From Transport Map to Transport Plan: The Kantorovich-form of OT
P1

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939

» Find a transport plan/coupling to minimize the expected cost.

. 1/p
Wp(po, p1) i= (inf @¥(z,y)m(x, y)dady
g (wﬁ’/)eXQ
Er yr [ (2.9)] (2)
s.t. m e (po, p1) = 7r>0‘/ dm—pl,/ (-,y)dy:pg}.
X

» When d(z,y) = ||z — yl|p, W, is p-order Wasserstein distance.
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From Transport Map to Transport Plan: The Kantorovich-form of OT

P1 P1
O o " @

P 2@ ® P
Sampling or ® *—o
Discrete Measure PY o o
® oo

Given X = {xm}%:l PO = Zﬁfﬂ p0,m0z,, and Y = {yn}é\le, p1 = 27]:[:1 P1,n0y,,,
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From Transport Map to Transport Plan: The Kantorovich-form of OT

P1 P1
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Sampling or ® *—o
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Given X = {$m}%:1 PO = Z?nlzl p0,m0z,, and Y = {Z/n}r]yzp P1 = 27]:[:1 P1,n0y,,,

VoY 1/p 1/p
X,Y):= i d? m»y Yn)Pmn = i D, P ) 3
W)= gpin) 32 3@ Gmemiom) =, pin, (P ©)

where D = [dp(xmayn)]v P = [ mn]y H(p07p1) = {P > 0|P1N = PO;PTlM = Pl}
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From Transport Map to Transport Plan: The Kantorovich-form of OT

P1 P1
O o "ilt

Po 0@ ® P
Sampling or ® *—o
Discrete Measure PY o o
® oo

Given X = {$m}%:1 Po = Zﬁf:l P0,m0z,, and Y = {yn}rjyzlv pP1 = 25:1 P1,n0y,,,

Mo 1/p 1/p
X,Y):= i dP (T, Yn)Pmn = i D,P , (3
W)= gpin) 32 3@ Gmemiom) =, pin, (P ©)

where D = [dP (2, Yn)], P = [Pmn), U(po, p1) = {P > 0|P1ly = po, P" 1y = p1}.
» Applying the transport plan 7 /P, we allow each sample x ~ pg to be split and
mapped to multiple locations.
» If the optimal T exists, it determines an OT plan 7*/P*, so W, < M,,.
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Advantages of Optimal Transport

A valid metric for probability measures
> (P(X),W) is a metric space of probability
measures defined in X (i.e., Wasserstein
space).
» Apply to distribution comparison, fitting, and
interpolation
OT plan indicates sample pairs

» Apply to point cloud/shape/graph matching
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Classic OT-based Generative Modeling Paradigms

Solution 1: Minimize )V, approximately in its dual-form or its SW surrogates:

>

>
>
>

WGAN: Wasserstein generative adversarial networks. ICML, 2017.
WGAN-GP: Improved training of Wasserstein GANs. NeurlPS, 2017.
Max-SWG: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.

Amortized Max-SWG Amortized projection optimization for sliced Wasserstein generative models.
NeurlPS, 2022.
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Solution 1: Minimize )V, approximately in its dual-form or its SW surrogates:

>

>
>
>

WGAN: Wasserstein generative adversarial networks. ICML, 2017.
WGAN-GP: Improved training of Wasserstein GANs. NeurlPS, 2017.
Max-SWG: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.

Amortized Max-SWG Amortized projection optimization for sliced Wasserstein generative models.
NeurlPS, 2022.

Solution 2: Minimize )V, approximately in its primal-form:

>

>
>
>
>

WAE: Wasserstein Auto-Encoders. ICLR, 2018.

SinkDiff: Learning generative models with Sinkhorn divergences. AISTATS, 2018.
SWAE: Sliced Wasserstein auto-encoders. ICLR, 2018.

RAE: Learning autoencoders with relational regularization. ICML, 2020.

Conditional Transport: Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions.
NeurlPS, 2021.
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Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN): Fit the model distribution
Py by minimizing its 1-Wasserstein distance to the data distribution p, in the
dual-form:

Wi (P, pg) = ﬂeni(f;f’p )E(x,g(z))Nﬂ'[Hx —9(2)h] = ;élLP E,[f(2)] =E:[f(9(=))] (4
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Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN): Fit the model distribution
Py by minimizing its 1-Wasserstein distance to the data distribution p, in the
dual-form:

Wi (P, pg) = ﬂeni(gf,p )E(x,g(z))NTr[Hx —g(2)h] = ;élLP E,[f(2)] =E:[f(9(=))] (4

Therefore, we have

inf Wi (pz, pg) <= inf sup E,[f(z)] — E.[f(g(2))] (5)
g g feLy
Given a set of samples X = {z,,}V_, and a set of latent code Z = {z,}_,, we have
min s S 1/ )] = 21 olen) (6)
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Wasserstein Autoencoder (WAE)

Wasserstein autoencoder (WAE): Fit the model distribution p, by minimizing its
W, distance to the data distribution p, approximately.

irglf Wa(pa» Pg)
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Wasserstein Autoencoder (WAE)

Wasserstein autoencoder (WAE): Fit the model distribution p, by minimizing its
W, distance to the data distribution p, approximately.

9z f
. . — L
HglfWZ(pmapg) ~ bn}' Eszqz\z;f [dx(l‘, g(Z))] + Vd(Epr [Qz\1f]apz) ) (7)
reconstruction loss distance(posterior, prior)

» q.|a;s is the posterior of z given x, parameterized by an encoder [ : X — Z.
» q..; = Ep,[q)a;y] is the expectation of the posterior distributions.

» p, is the prior of z.

» d: MMD, OT distances, even GAN

11/38



The above methods are based on the static
definition of OT (i.e., Kantorovich-form OT).
The dynamic-form OT triggers more recent
generative modeling methods — flow matching.
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The Dynamic Definition of OT

The displacement interpolation determined by transport map 1':

Po pe = (AT + (1 = t)Id)4po p1
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The Dynamic Definition of OT

The displacement interpolation determined by transport map 1':

p0 pi = (tT + (1 = )Id) o o

What is the relationship between optimal transport and displacement
interpolation?

13/38



The Dynamic Definition of OT

Definition 1 (Dynamic Formulation of Optimal Transport)

Let X C R? be the Euclidean sample space. For pg, p1 € P(X), W2(po, p1)
corresponds to seeking a unique least—kinetic—energy flow (velocity field) v:

W2 (00, p1) = 1nf// (e, 0oz, )|3dxdt, st 0p+ V.- (vp) =0 (8)

Contmmty Equation

Kmetlc Energy

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

Numerische Mathematik, 2000.
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The Dynamic Definition of OT

Definition 1 (Dynamic Formulation of Optimal Transport)

Let X C R? be the Euclidean sample space. For pg, p1 € P(X), W2(po, p1)
corresponds to seeking a unique least—kinetic—energy flow (velocity field) v:

W2(p0, p1) = 1nf// @ Dllv(a. 1) 3dedt, st dp+ V- (v9) =0 (8)

v(x,t

Contmmty Equation
Kmetlc Energy

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.
Numerische Mathematik, 2000.
» Solving the continuity equation with the optimal flow v* leads to the optimal
displacement interpolation between pg and p;.
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Continuity Equation

» Continuity equation describes the time rate of
change of the fluid density (9;p(z,t)) at a fixed
point x in space.

A A, Op+ V- (vp) =0 (9)

» The rate equals to the rate of change of density by
convection (V. - (vp)).
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» Continuity equation describes the time rate of
change of the fluid density (9;p(z,t)) at a fixed
point x in space.

A A, Op+Va-(vp) =0 9)

» The rate equals to the rate of change of density by
convection (V. - (vp)).

Given a sample at time ¢, i.e., x; ~ p;, we have

d.’IJt

i v(xy, t), Lo = Tt + ot - v(xt,tz. (10)

TV
Euler step
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Continuity Equation

» Continuity equation describes the time rate of
change of the fluid density (9;p(z,t)) at a fixed
point x in space.

A A, Op+Va-(vp) =0 9)

» The rate equals to the rate of change of density by
convection (V. - (vp)).

Given a sample at time ¢, i.e., x; ~ p;, we have

d.’Et

i v(xy, t), Lo = Tt + 5t - v(xy,t) . (10)

Euler step
Modeling the flow v leads to a new generative model strategy: Flow Matching.
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Flow Matching (FM)

Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.

R

Sample

vg(z, t)

Flow Matching for Generative
Modeling. ICLR, 2023.

Improving and generalizing flow-based
generative models with minibatch

optimal transport. TMLR, 2024.

16/38



Flow Matching (FM)

U&(ft, t)

Flow Matching for Generative
Modeling. ICLR, 2023.

Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.
» Conditional FM (CFM): Set py = N(0, 1), with
an auxiliary variable z ~ 7

ming E.or, 1, ollvo(,t) —ve(al2)|?],  (11)

Generate new data by &1 = 2o + fol vg(ay, t)dt. In
practice, Ty1ar = Tt + At - vg(xy, ).
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Flow Matching (FM)

Flow Matching for Generative
Modeling. ICLR, 2023.

Improving and generalizing flow-based
generative models with minibatch

optimal transport. TMLR, 2024.

Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.
» Conditional FM (CFM): Set py = N(0, 1), with
an auxiliary variable z ~ 7

ming E.or, 1, ollvo(,t) —ve(al2)|?],  (11)

Generate new data by &1 = 2o + fol vg(ay, t)dt. In
practice, Ty1ar = Tt + At - vg(xy, ).

» FM (Lipman et al.):
pe(z|z) = N(tz, (to —t +1)%), 7= py

» I-CFM: 2, = (1 —t) - zg+t-x1, m = po X p1

» OT-CFM: Optimal Transport (OT)

perspective...
16 /38



OT-CFM: Optimal Transport Perspective of FM

» OT-CFM: implements CFM by setting the distribution 7 in (11) as the OT plan
corresponding to W3 (po, p1) and oy = (1 —t) - @ +t - 21.

Upper-level: Lcppm

meinE(:ro,xl)wﬂ*, tNUnif[O,l][HUG(xt’t) - (‘Tl - xU)HQL
(12)

Lower-level: W2(po,p1)

st. 7* = argmin E.[||z; — z0]3],
m€ll(po,p1)

This is a Bi-level Optimization Problem.
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OT-CFM: Optimal Transport Perspective of FM

(a) I-CFM, 7 = po X p1 (b) OT-CFM, 7 = 7*

The objective of OT-CFM regresses vy (xy,t) to the constant velocity (x; — xg),
leading to the interpolation between py and p; yielding OT, i.e., Wa(po, p1)-
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OT-CFM: Optimal Transport Perspective of FM

Notably, constant velocity is sufficient but not necessary for straightening flows,
which might introduce too strong inductive bias to the generative model.

Proposition 2 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the
acceleration is everywhere parallel to the velocity. The classical (first-order)
dynamical optimal transport is recovered as the special case with zero acceleration.

19/38



OT-CFM: Optimal Transport Perspective of FM

Notably, constant velocity is sufficient but not necessary for straightening flows,
which might introduce too strong inductive bias to the generative model.

Proposition 2 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the
acceleration is everywhere parallel to the velocity. The classical (first-order)
dynamical optimal transport is recovered as the special case with zero acceleration.

How about pursue a flow with minimal acceleration instead
of constant velocity?

19/38



OAT-FM: Two-Phase FM Based on Optimal Acceleration Transport

Obtaining an Initial Penalizing the upper bound of
Velocity Field Optimal Acceleration Transport

(wo,v0) ~ o =1

y

Velocit:

<

(@1,01) ~

v
a(vg,t)) LY

Velocity

(vo(x+,1),

Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

3) OAT-FM (Sample x Velocity Space): A novel two-phase FM based on

Optimal Acceleration Transport (OAT)
» Refine an arbitrary pre-trained flow/diffusion generator
20/38

» Minimize the acceleration transport between g and g



Optimal Acceleration Transport (OAT)

Key lIdea: For 1o and i in the product space (X x V), find a flow that minimizes
total squared acceleration under second-order dynamics.
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Optimal Acceleration Transport (OAT)

Key lIdea: For 1o and i in the product space (X x V), find a flow that minimizes
total squared acceleration under second-order dynamics.

Definition 3 (Dynamic Formulation of Optimal Acceleration Transport *)

Let X C R? be the sample space and V C R? the velocity space (by default V = Rd).
For po, 1 € P(X x V), the optimal acceleration transport between them is defined as

A2 (po, 1) = mln/ / w(z,v,t) ||a(z,v,t)||3 dz dv dt, (13)
xxV 2

subject to the Vlasov equation 0,y +v - Vo + V,, - (a u) = 0, with boundary

conditions y(-,-,0) = po and p(-,-,1) = py. Here, a: X x V x [0,1] — R% is the
acceleration field, and the Vlasov equation expresses conservation of mass in the

product space.

Benamou et al., 2019. Second-order models for optimal transport and cubic splines on the Wasserstein space
21/38



Optimal Acceleration Transport (OAT)

Definition 4 (Kantorovich formulation of OAT 2:3:4)

Given zg = (xg,v0) ~ o and z; = (x1,v1) ~ u1, the OAT problem is equivalent to
solving an optimal coupling w.r.t. squared acceleration cost, i.e.,

A% (/’Lﬂa :u’l)

= minﬂ'EH(uo,pl) E(Zo,zl)Nﬂ' [C?A(ZO? Zl)]

. r1 — g v1 + vg (|2 9 (14)
= Nt m) Bz [12 | T = 25 |+ = wol? ],
> v acceleration penalty

velocity alignment

where T' > 0 denotes the time horizon between o and w1, which is 1 in our case.

2Chen et al., 2018. Measure-valued spline curves: An optimal transport viewpoint
3Benamou et al., 2019. Second-order models for optimal transport and cubic splines on the Wasserstein space
4Brigati et al., 2025. Kinetic Optimal Transport (OTIKIN) — Part 1: Second-Order Discrepancies Between Probability Measures
22/38



OAT-FM: Refine Pre-trained vy Using OAT

Problem Setup:
» Trajectory endpoints: zg = (g, vg(x0,0)) and 21 = (x1,v9(x1,1)).
» Path x;: Linear interpolation zy = (1 — t)zg + tx;.
> Model state: z.(6) = (x¢, vo(4,1)).

23/38



OAT-FM: Refine Pre-trained vy Using OAT

Problem Setup:
» Trajectory endpoints: zg = (g, vg(x0,0)) and 21 = (x1,v9(x1,1)).
» Path x;: Linear interpolation zy = (1 — t)zg + tx;.
> Model state: z.(6) = (x¢, vo(4,1)).

Cost Function 7 4:

T — X0 vo—i—vg
la(z0,21,t; 0) = H

t
Velocity AIigIment (0—1)
1 — Ty Vg + U1
I P
1-1¢

Velocity Alignment (t—1)

|+ =) oo —wl
—_————

Accel. Penalty (0—t)

(15)

[+0-a) o wl
—_————

Accel. Penalty (t—1)

Imitate the cost in OAT:

> Hyperparameter « balances velocity alignment vs. acceleration minimization.

> With a = 12

12, recovers OAT cost structure: €4 = 15 (c% (20, 2¢) + % (21, 21)).
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OAT-FM: Refine Pre-trained vy Using OAT

OAT-FM Problem: We fine-tune the flow model by solving the following Bi-level
Optimization Problem:

Upper-level: Loat (10,41 )

M E(z, 1), inuniffo,1] (€4 (20, 21, 85 0)],

Lower-level: A% (po,p1)

st. 7 = argmin E(,; )% (20, 21)] -
WGH(/J(),/L]_)

» Lower-level: Finds the optimal coupling 7* that minimizes total acceleration in
the product space.

> Upper-level: Aligns the learned flow with the OAT geodesics via £ 4.

> Parameter o: Balances directional alignment and acceleration minimization.

24/38



OAT-FM vs. OT-CFM

Component OT-CFM OAT-FM (Proposed)

Space Sample Space X Product Space X x V
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Lower-level Optimal Transport (OT) Optimal Acceleration Transport (OAT)
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OAT-FM vs. OT-CFM

Component OT-CFM OAT-FM (Proposed)
Space Sample Space X Product Space X x V
Dynamics Continuity Equation Vlasov Equation

Op+ V- (vp) =0 O+ Vg - (vp) + Vi - (ap) =0
Lower-level Optimal Transport (OT) Optimal Acceleration Transport (OAT)
(Coupling) 7% = argmin E[||z1 — 20]/?] m* = argmin E[c? (20, 21))
Upper-level Velocity Matching Velocity Alignment + Acceleration Minimization
(Objective) min |jvg — (z1 — 20)]|? min £ 4(2p, 21,;6)
Mechanism Constant Velocity Minimal Acceleration (Smooth Velocity)
(Straightening) | min ;| [lv,[[?dt = & =0 min [} [|a;[?dt = =0
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Theoretical Guarantees of OAT-FM
Theorem 5 (OAT Bound of OAT-FM)

The OAT-FM objective Loat(o, p1; «) is lower-bounded by a scaled version of the
true OAT second-order discrepancy, i.e.,

2
Loat(po, p1; o) > 2—7,4%(,%, pi), (17)

with o = 2/3, and the equality held if and only if vy = vy for m*-almost every pair.
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Theorem 5 (OAT Bound of OAT-FM)

The OAT-FM objective Loat(o, p1; «) is lower-bounded by a scaled version of the
true OAT second-order discrepancy, i.e.,

2
Loat(po, p1; o) > 2—7A§(,u0, pi), (17)

with o = 2/3, and the equality held if and only if vy = vy for m*-almost every pair.

Theorem 6 (Straightening Flow via OAT)

Given two boundary distributions g, 1 € P(X x V), OAT admits an optimal coupling
7 € M(uo, 1) for the static problem in (14). For every (zg,vg), (x1,v1) ~ 7, the
corresponding trajectory is straight iff vg and vy are collinear with x1 — xg. Otherwise,
it bends exactly to match the endpoints’ orthogonal components.
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Efficient Implementation via Decomposable Structure

Upper-level: Loat(po,u1; )

meinE(zO,zl)w*, t~Unif(0,1] (€4 (20, 21, 0)],
(18)

Lower-level: A2 (p0,p1)

st. 7 = argmin E(,, )% (20, 21)] -
m€l(po,p1)

The Challenge: Solving OAT requires the coupling 7 as a 4D tensor.
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Efficient Implementation via Decomposable Structure

Upper-level: Loat(po,u1; )

IneinE(zo,m)Nﬂ*, t~Unif[0,1] [eA(ZOa 21,4 9)]7

Lower-level: A%(Mo,lﬂ) (18)
st. 7 = argmin E(,, )% (20, 21)] -
WGH(NO)“l)
The Challenge: Solving OAT requires the coupling 7 as a 4D tensor.
The Simplification (Decomposition): In FM, velocities are deterministic given
samples: v = vg(z,t). This implies a decomposable structure for the coupling:
7T(20721) = 7'(-90(55071'1) : 51}9(x0,0)(1}0) ’ 51}9(x1,1)(vl) . (19)
——

Sample Coupling Deterministic Velocity Assignment
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Efficient Implementation via Decomposable Structure

The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT
problem on samples:

ArgMin s, o), [12]1 — 20 — B |2 + [l 3], (20)
W:I:EH(907P1)
where pg, p1 are marginals on X, and velocities are fixed by the current model:
> Upoz = %(U@(:Eo,()) + vg(z1,1)) (Mean Velocity)
» Upyar = vo(z1,1) — vg(x0,0) (Velocity Difference)
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Efficient Implementation via Decomposable Structure

The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT
problem on samples:

ArgMin s, o), [ 121 — 20 — Bz |2 + [l 3], (20)
W:I:GH(907P1)
where pg, p1 are marginals on X, and velocities are fixed by the current model:
> Upoz = %(U@(:Eo,()) + vg(z1,1)) (Mean Velocity)
» Upyar = vo(z1,1) — vg(x0,0) (Velocity Difference)

Computational Complexity Analysis:
» Exact OT (Linear Program): Q(B3).
» Sinkhorn Algorithm (Approximation): Q(B?).
> Solved efficiently via iterative matrix scaling (highly parallelizable).
> Recovers exact OT solution when € — 0.
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Algorithm Scheme: OAT-FM Training Loop

Algorithm 1 OAT-FM Training Procedure

Require: Pre-trained model vy,, Dataset D, Batch size B, EMA rate A.

Ensure: Refined velocity field vg.
1: Initialize vo < vy, .
2: while training do

3: // Step 1: Data Preparation
4: Sample batch {z1,;}72, ~ D, {z0,i}721 ~N(0,1), t ~ U0, 1].
5: Estimate boundary velocities using current model:
{vo,i = vo(0,i,0) i1, {vii = wvoler,i, I
6: // Step 2: Lower-Level (Coupling)
7 Compute optimal coupling T* by solving the reduced classic OT.
8: Sample pairs (z1,z0) ~ T to get aligned batches.
9: // Step 3: Upper-Level (Optimization)
10: Interpolate z; < (1 — t)xo + tx1, predict vi < vo(xe,t).
11: Compute Loat and update: 0’ < 0 — Vo LoaT.
12: Update EMA: 6 < stopgrad(\d + (1 — \)¢’).
13: end while
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Compare to Other 2-Phase FM Methods

Obtaining an Initial Penalizing the upper bound of
Velocity Field Optimal Acceleration Transport

50‘°Q\e

t=0

(wo,v0) ~ o t=1

(z1,01) ~ 11

Velocity
Velocit;

<

3
(vo(w1,1), a(vg, 1)) QY

Phase 2

OAT-FM in the product space

> ReFlow, Consistency Distillation: Pursue straight flows and reduce sampling
steps, but suffer from distribution drift inevitably.

» OAT-FM: Pursue smooth flows, may not reduce sampling steps but without

distribution drift.
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Application 1: Low-dimensional OT Benchmark

20000 Batches (I-CFM) +1000 Batches (OAT-FM) +5000 Batches (OAT-FM) +20000 Batches (OAT-FM)

Experimental Setup:
» Tasks: 5 standard 2D distribution mapping tasks (e.g., 8gaussians — moons).
» Evaluation Metric: 2-Wasserstein distance and Normalized Path Energy (NPE):

A2 1
NPE('U@) — |PE(’U6) W2 (p07p1)|, Wlth PE('U@) — E,ro/ Hve(xt’t)HZdt (21)
0

W2 (po, p1)
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Application 1: Low-dimensional OT Benchmark

Task N —8gs 8gs—moons N —moons N —scurve moons—8gs
Method ~ W2l NPEL W2 NPE, WZ?| NPEL W2, NPE, W:?| NPE|
FM 0.5810.16 0.2440.01 5.80+£0.06 0.05+0.02 0.151007 0.27+0.05 0.81+0.30 0.0810.04 7.391+045 0.96+0.05
+OAT-FM 0.31.40,09 0.0210.01 0.08.£0.03 0.0110,01 0.081003 0.03:0.01 0.90+0.18 0.0310.02 0.28:0.10 0.04.10.02
I-CFM 0.45:018 0.3040.01 0.1840.05 1401005 0.11:003 0.5240.06 1.16+047 0.031003 0.7410.12 1.1940.06
+OAT-FM 0.324010 0.041001 0.15:003 0.1310.01 0.0710.02 0.04:004 1.121045 0.031002 0.50011 0.441003
VP-CFM  0.4340.14 0.241001 0.151002 1.241005 0.10+0.03 0.31+0.07 1.051041 0.22:0.04 1.394035 1.2210.05
+OAT-FM 0.3140.12 0.0340.01 0.0940.01 0.0210,01 0.071002 0.04:0.01 1.104034 0.031002 0.321010 0.1040.02
+OAT-FM 0.34.0,08 0.03+0.01 0.07£0.01 0.0110,01 0.09:0.04 0.100.04 0.80+0.18 0.0210.02 0.25:0.08 0.0310.02

0.8710.33 0.0310.03
0.831034 0.0410.02

0.29.0.09 0.10+0.02
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Application 2: Unconditional Image Generation (CIFAR-10)

Method #Batch NFE| FIDJ
FM 400K 147 3.71
FM + OAT-FM +1K 135 3.54
I-CFM 400K 149 3.67
I-CFM + OAT-FM +1K 138 3.48
OT-CFM 400K 132 3.64
OT-CFM + OAT-FM +1K 126 3.46
DDPM* 1K 3.17
Score SDE* 2K 2.38
LSGM* 147 2.10
2-ReFlow++* 35 2.30
EDM 35 1.96
EDM + OAT-FM +12K 35 1.93

FID(!)

Lower-level Upper-level

Problem Problem

Phase-1 Method

Without Phase-2 Training

W2 in (12) Lcgm in (12)
W2 in (12) Loar in (20)
AZin (20) Lcgm in (12)
A2 in (20) Loat in (20)

FID-100 Results

L -8 Euler 100 Steps 0.0470

h o068
0.0466
0.0464

0.0462

u
/
Straightness ( ! )

LN 0.0460

0.0458
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Training Samples (K)

FM EDM
3.71 1.96
3.75 8.77
3.55 8.68
3.81 1.95
3.54 1.93

Straightness
K —A- Straightness
»,
\\.
A
~
\,
R
\_“v
\\.

0.0 01 0.2 03 0.4 05 0.6 07 0.8 09 1.0
Training Samples (K)
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Application 3: Large-scale Conditional Image Generation

(a) SIT-XL (Left) v.s. + OAT-FM (Right)

(c) SIT-XL (Left) v.s. + OAT-FM (Right) (d) SIT-XL (Left) v.s. + OAT-FM (Right)
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Application 3: Large-scale Conditional Image Generation

Method #Epochs FID] sFID] ISt P RT
BigGAN-deep 6.95 736 1714 0.87 0.28
StyleGAN-XL 230 4.02 2651 0.78 0.53
Mask-GIT 6.18 - 182.1 - -

ADM-G/U 394 6.14 2158 0.83 0.53
CDM 4.88 - 158.7 - -

RIN 3.42 - 182.0 - -

Simple Diffusiony.viT, L 2.77 - 211.8 - -

VDM++ 2.12 - 267.7 - -

DiT-XLcrg=15 227 460 2782 0.83 0.57
SiT-XLcrg=15, Sampler=ODE 1,400 2.11 4.62 256.0 0.81 0.61
SiT—XLCFG:1.5’ Sampler=ODE + OAT-FM +5 2.05 4.62 259.4 0.80 0.61
SiT-XLcpg=25, Sampler=ODE 1,400 691 6.42 3915 0.89 0.47
SiT-XLcrg=2.5, Sampler—=oDE + OAT-FM +5 6.57 5.98 394.8 0.89 0.49
SiT-XLcrg=15, Sampler=SDE 1,400 2.05 450 2696 0.82 0.59
SiT-XLcrg=1.5, Sampler=sDE + OAT-FM +5 2.00 4.43 275.1 0.82 0.59
SiT-XLcrg=25, Sampler=SDE 1,400 7.75 6.64 405.0 0.90 0.45
SiT-XLcrg=25, Sampler=SDE + OAT-FM +5 7.44 5.77 409.9 0.90 0.46
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Summary

> OT-CFM shows the potential dynamic OT in generative modeling.

» Propose OAT-FM to straighten flow trajectories by minimizing acceleration in the
joint sample-velocity space.

» Introduce an efficient two-phase fine-tuning paradigm that improves pre-trained
models without distribution drift.

» Achieve superior generation quality on high-dimensional tasks (e.g., CIFAR-10,
ImageNet) with minimal training overhead.
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