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Distribution Comparison and Transformation: Key Learning Tasks

Shape Matching and Interpolation Image (Conditional) Generation

Textual Data Comparison and Generation

Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ToG, 2015.
Flow Matching for Generative Modeling. ICLR, 2023.
Large language diffusion models. NeurIPS, 2025.

4 / 146



Distribution Comparison and Transformation: Key Learning Tasks

Distribution
Comparison

Distribution 
Transformation
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▶ Data Clustering, Domain Adaptation, Metric Learning, Representation Learning,
Generative Modeling, ...

▶ Optimal transport theory provides solid and effective solutions to distribution
comparison and transformation.
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Origin: The Monge-form of The Optimal Transport Problem
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ω1 = T#ω0

<latexit sha1_base64="HtKeDgV1c+hCoz54Rc4OUfAYI2s="></latexit>

Push-forward of ω0
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A Transport Map

A metric space:
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?

▶ The p-order Monge problem:

Mp(ρ0, ρ1) :=
(
inf
T

∫
x∈X

dp(x, T (x))︸ ︷︷ ︸
cost per sample

dµ(x)
)1/p

, s.t. T#ρ0 = ρ1︸ ︷︷ ︸
measure preserving

(1)

▶ Notably, the minimizer of (1) may not exist, e.g., ρ0 is a Dirac measure while ρ1
is not.
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A Transport Map

A metric space:
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?
▶ The p-order Monge problem:

Mp(ρ0, ρ1) :=
(
inf
T

∫
x∈X

dp(x, T (x))︸ ︷︷ ︸
cost per sample

dµ(x)
)1/p

, s.t. T#ρ0 = ρ1︸ ︷︷ ︸
measure preserving

(1)

▶ Notably, the minimizer of (1) may not exist, e.g., ρ0 is a Dirac measure while ρ1
is not.
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<latexit sha1_base64="WUis+rPIkpIO8Rfu9VMr1ishM90=">AAAB7XicdVBNSwMxEJ31s9avqkcvwSJ4KrtF1vZW9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5YcKZNq774aysrq1vbBa2its7u3v7pYPDtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr9zj1Vmklxa6YJDWI8EixiBBsrtftqLAfeoFR2K66F76OceDXXs6Rer1WrdeTNLdctwxLNQem9P5QkjakwhGOte56bmCDDyjDC6azYTzVNMJngEe1ZKnBMdZDNr52hU6sMUSSVLWHQXP0+keFY62kc2s4Ym7H+7eXiX14vNVEtyJhIUkMFWSyKUo6MRPnraMgUJYZPLcFEMXsrImOsMDE2oKIN4etT9D9pVyueX/FvzsuNy2UcBTiGEzgDDy6gAdfQhBYQuIMHeIJnRzqPzovzumhdcZYzR/ADztsnolGPMw==</latexit>ω1

<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0

<latexit sha1_base64="37ED01EMaIgXcJCDkA7G/dPRTlw="></latexit>

ω → !(ε0, ε1)

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939
▶ Find a transport plan/coupling to minimize the expected cost.

Wp(ρ0, ρ1) :=
(
inf
π

∫
(x,y)∈X 2

dp(x, y)π(x, y)dxdy︸ ︷︷ ︸
Ex,y∼π [dp(x,y)]

)1/p

s.t. π ∈ Π(ρ0, ρ1) =
{
π ≥ 0

∣∣∣ ∫
X
π(x, ·)dx = ρ1,

∫
X
π(·, y)dy = ρ0

}
.

(2)

▶ When d(x, y) = ‖x− y‖p, Wp is p-order Wasserstein distance.
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<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0
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<latexit sha1_base64="AmCRaBXMP6XkdTLThaWaBe7yMsY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpLWtO6KblxWsA9oQ5lMJ+3YyUyYmQgl9B/cuFDErf/jzr9x0lZQ0QMXDufcy733hAmjSjvOh7Wyura+sVnYKm7v7O7tlw4O20qkEpMWFkzIbogUYZSTlqaakW4iCYpDRjrh5Cr3O/dEKir4rZ4mJIjRiNOIYqSN1O7LsRg4g1LZsS/qvnfuQcd2nJpX8XPi1apeBbpGyVEGSzQHpff+UOA0JlxjhpTquU6igwxJTTEjs2I/VSRBeIJGpGcoRzFRQTa/dgZPjTKEkZCmuIZz9ftEhmKlpnFoOmOkx+q3l4t/eb1UR/UgozxJNeF4sShKGdQC5q/DIZUEazY1BGFJza0Qj5FEWJuAiiaEr0/h/6Tt2a5v+zfVcuNyGUcBHIMTcAZcUAMNcA2aoAUwuAMP4Ak8W8J6tF6s10XrirWcOQI/YL19Aqxxjzk=</latexit>ω0

<latexit sha1_base64="37ED01EMaIgXcJCDkA7G/dPRTlw="></latexit>

ω → !(ε0, ε1)

Sampling or
Discrete Measure

<latexit sha1_base64="Ekz1oza5QvZzIybxLKNU5s5PwsE=">AAAB/HicdVDNS8MwHE3n15xf1R29BIfgaXTd7OZt6MXjBPcBaylplm1haVOSVChl/itePCji1T/Em/+N6TZBRR+EPN77/cjLC2JGpbKsD6Owtr6xuVXcLu3s7u0fmIdHPckTgUkXc8bFIECSMBqRrqKKkUEsCAoDRvrB7Cr3+3dESMqjW5XGxAvRJKJjipHSkm+W3YCzkUxDfWWumHLfmvtmxapetBz73IZW1bKadt3Jid1s2HVY00qOClih45vv7ojjJCSRwgxJOaxZsfIyJBTFjMxLbiJJjPAMTchQ0wiFRHrZIvwcnmplBMdc6BMpuFC/b2QolHk+PRkiNZW/vVz8yxsmatzyMhrFiSIRXj40ThhUHOZNwBEVBCuWaoKwoDorxFMkEFa6r5Iu4eun8H/Ss6s1p+rcNCrty1UdRXAMTsAZqIEmaINr0AFdgEEKHsATeDbujUfjxXhdjhaM1U4Z/IDx9gmtOZV3</latexit>ω0

<latexit sha1_base64="c4ro5G1//DrV5/Ji6wFOW3fvlZE=">AAAB/HicdVDNS8MwHE3n15xf1R29BIfgabRD6nYbevE4wX3AWkqapltY2pQkFUqZ/4oXD4p49Q/x5n9juk1Q0Qchj/d+P/LygpRRqSzrw6isrW9sblW3azu7e/sH5uHRQPJMYNLHnHExCpAkjCakr6hiZJQKguKAkWEwuyr94R0RkvLkVuUp8WI0SWhEMVJa8s26G3AWyjzWV+GKKfftuW82rKal4TiwJHbbsjXpdNqtVgfaC8uyGmCFnm++uyHHWUwShRmScmxbqfIKJBTFjMxrbiZJivAMTchY0wTFRHrFIvwcnmolhBEX+iQKLtTvGwWKZZlPT8ZITeVvrxT/8saZitpeQZM0UyTBy4eijEHFYdkEDKkgWLFcE4QF1VkhniKBsNJ91XQJXz+F/5NBq2k7TefmvNG9XNVRBcfgBJwBG1yALrgGPdAHGOTgATyBZ+PeeDRejNflaMVY7dTBDxhvn6MalXE=</latexit>ω1

Given X = {xm}Mm=1, ρ0 =
∑M

m=1 ρ0,mδxm and Y = {yn}Nn=1, ρ1 =
∑N

n=1 ρ1,nδyn ,

Wp(X,Y ) :=
(

min
P∈Π(ρ0,ρ1)

M∑
m=1

N∑
n=1

dp(xm, yn)pmn

)1/p
=
(

min
P∈Π(ρ0,ρ1)

〈D,P 〉
)1/p

, (3)

where D = [dp(xm, yn)], P = [pmn], Π(ρ0,ρ1) = {P > 0|P1N = ρ0,P
>1M = ρ1}.

▶ Applying the transport plan π/P , we allow each sample x ∼ ρ0 to be split and
mapped to multiple locations.

▶ If the optimal T ∗ exists, it determines an OT plan π∗/P ∗, so Wp ≤Mp.
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Given X = {xm}Mm=1, ρ0 =
∑M

m=1 ρ0,mδxm and Y = {yn}Nn=1, ρ1 =
∑N

n=1 ρ1,nδyn ,

Wp(X,Y ) :=
(

min
P∈Π(ρ0,ρ1)

M∑
m=1

N∑
n=1

dp(xm, yn)pmn

)1/p
=
(

min
P∈Π(ρ0,ρ1)

〈D,P 〉
)1/p

, (3)

where D = [dp(xm, yn)], P = [pmn], Π(ρ0,ρ1) = {P > 0|P1N = ρ0,P
>1M = ρ1}.

▶ Applying the transport plan π/P , we allow each sample x ∼ ρ0 to be split and
mapped to multiple locations.

▶ If the optimal T ∗ exists, it determines an OT plan π∗/P ∗, so Wp ≤Mp.
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Advantages of Optimal Transport

A valid metric for probability measures
▶ (P(X ),W) is a metric space of probability

measures defined in X (i.e., Wasserstein
space).

▶ Apply to distribution comparison, fitting, and
interpolation

OT plan indicates sample pairs
▶ Apply to point cloud/shape/graph matching
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OT Plan
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Computational Bottlenecks of Optimal Transport and Possible Solutions
▶ A constrained linear programming problem:

Wp
p (X,Y ) = min

P∈Π(ρ0,ρ1)
〈D,P 〉, (4)

Lead to O(N3) complexity.

▶ Solution 1: Develop efficient optimization algorithms and acceleration methods
▶ Sinkhorn-scaling
▶ Proximal point
▶ Bregman ADMM

▶ Solution 2: Apply structured/stochastic OT plan
▶ Stochastic optimization
▶ Sinkhorn-scaling with importance sparsification

▶ Solution 3: Explore efficient surrogates of OT distance
▶ Sliced Wasserstein (SW) distance
▶ Hilbert curve projection (HCP) distance
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Sinkhorn-scaling Algorithm for Entropic OT
Sinkhorn Distance (Entropic OT): Improve the smoothness of OT problem

Wp
p,ϵ := min

T∈Π(ρ0,ρ1)
〈D,P 〉−ϵ H(P )︸ ︷︷ ︸

Entropy

, where H(P ) = −〈logP − 1M×N ,P 〉. (5)

Sinkhorn distances: Lightspeed computation of optimal transport. NeurIPS, 2013.

The Lagrangian form of EOT is

max
a∈RM , b∈RN

min
P
〈D,P 〉 − ϵH(P ) + 〈a,P1N − ρ0〉+ 〈b,P>1M − ρ1〉. (6)

Sinkhorn-Knopp algorithm:
1. Set a kernel matrix Φ = exp(−D

ϵ ) and a dual variable a = ρ0.
2. Sinkhorn iteration: Repeat b← ρ1

Φ⊤a
, then a← ρ0

Φb until convergence.
3. P ∗ ← Φ� (ab>).

Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 1967.
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Drawbacks of Sinkhorn-scaling in OT Problem
▶ EOT is sensitive to ϵ

▶ A large ϵ leads to over-smoothed OT plan
▶ A small ϵ causes numerical instability

▶ The (explicit) entropic regularizer might be unnecessary
▶ Solve the “exact” OT problem via a Sinkhorn-like algorithm.
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Proximal Point Algorithm for “Exact” OT
1. Initialize P (0) ← ρ0ρ

>
1

2. In the k-th iteration, consider the penalty between the optimal transport and its
previous approximation

min
P∈Π(ρ0,ρ1)

〈D,P 〉+ β KL(P ‖P (k))︸ ︷︷ ︸
Proximal term

⇒ min
P∈Π(ρ0,ρ1)

〈D − β logP (k)︸ ︷︷ ︸
:=β logΦ(k)

,P 〉 − ϵH(P ).
(7)

3. Apply the Sinkhorn iterations to obtain P (k+1) = Φ(k) � (a(k)(b(k))>).

A fast proximal point method for computing exact Wasserstein distance. UAI, 2020.
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Proximal Point Algorithm = Adaptive Sinkhorn-scaling
▶ In the k-th iteration, denote a(k)(b(k))> as ∆(k).
▶ According to the algorithm, we have P (k) = Φ(k−1) �∆(k−1).

Φ(k) = exp
(
−D − β logP (k)

β

)
= exp

(
−D

β

)
� P (k)

= exp
(
−D

β

)
�Φ(k−1) �∆(k−1)

= exp
(
−k
β
D
)
� (�k−1

i=0∆
(i))︸ ︷︷ ︸

∆k

.

(8)

▶ ∆k determines the initial point while the problem corresponding to the iteration
steps is convex.

▶ So proximal point algorithm implements the Sinkhorn-scaling with a decaying
weight ϵ(k) = β

k .
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Bregman ADMM: Solve OT without Sinkhorn
▶ The Sinkhorn-based algorithm often suffers from numerical instability issue.
▶ Only apply to the OT problems with entropy/KLD regularizers.

Bregman ADMM: Simplifying the problem by decoupling the doubly-stochastic
constraint to two one-side constraints.
▶ Introduce an auxiliary variable S:

min
P∈Π(ρ0,ρ1)

〈D,P 〉 ⇔ min
P ,S
〈D,P 〉 s.t. P ∈ Π(ρ0, ·), S ∈ Π(·,ρ1), P = S. (9)

▶ Introduce a dual variable Z:

min
P ,S

max
Z
〈D,P 〉+ 〈Z,T − S〉+

Bregman Div.︷ ︸︸ ︷
ϵBϕ(T ,S)︸ ︷︷ ︸

Augmented Lagrangian

s.t. P ∈ Π(ρ0, ·), S ∈ Π(·,ρ1). (10)

Bregman alternating direction method of multipliers. NeurIPS, 2014.
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Bregman ADMM: Solve OT without Sinkhorn
Bregman Divergence: Given a differentiable and strictly convex function ϕ,

Bϕ(x, y) = ϕ(x)− ϕ(y)− 〈∇ϕ(y), x− y〉. (11)

Commonly-used Bregman divergence:
▶ ϕ(x) = 1

2x
2: Euclidean distance Bϕ(x, y) =

1
2‖x− y‖

2.
▶ ϕ(x) = x logx− x: KL-divergence Bϕ(x, y) = KL(x‖y) = x log x

y − x+ y.
Naturally, the Bregman ADMM is also applicable for various regularized OT:
▶ Considering the above Bregman divergence leads to the OT problems with

entropic or quadratic regularizers.
The Bregman ADMM algorithm solves the OT problems iteratively.
▶ Each step has a closed form.
▶ Sublinear convergence rate.
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The Bregman ADMM algorithm solves the OT problems iteratively.
▶ Each step has a closed form.
▶ Sublinear convergence rate.
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Besides improving smoothness, pursuing
structured OT plans leads to efficient algorithms.
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Structured OT Problems: Low-rank Optimal Transport

▶ The OT problem with a rank-r OT plan: P = Qdiag−1(g)R> ∈ Π(ρ0,ρ1)

min
Q, R, g

〈D, Qdiag−1(g)R>〉,

s.t. Q ∈ Π(ρ0, g), R ∈ Π(ρ1, g), g ∈∆r−1.
(12)

▶ A mirror descent scheme w.r.t. the KL-divergence, leading to proximal point
algorithm in each step.

▶ Take the update of Q as an example:

Q(k+1) = arg min
Q∈Π(ρ0,g(k))

〈Q,DR(k)diag−1(g(k))〉+ βKL(Q‖Q(k)). (13)

Low-rank Sinkhorn factorization, ICML, 2021.
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Structured OT Problems: Low-rank Optimal Transport

▶ Reduce the number of variables when r is small.
▶ Improve robustness to noise.

Statistical optimal transport via factored couplings. AISTATS, 2019.
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Structured OT Problems: Sparse Optimal Transport

▶ Replace the entropic regularizer to a quadratic regularizer:

min
P∈Π(ρ0,ρ1)

〈D, P 〉+ ϵ

2
‖P ‖2F . (14)

▶ Applying the L-BFGS algorithm to solve the smoothed dual formulation of (14),
the OT plan has a closed-form expression: for P ∗ = [p∗mn],

p∗mn =
1

ϵ
[a∗m + b∗n − dmn]+. (15)

▶ This problem is highly correlated with LASSO, leading to a sparse OT plan.
Smooth and sparse optimal transport. AISTATS, 2018.
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When focusing on OT distance rather than OT
plan, more efficient algorithms can be applied.
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Approximated Sinkhorn Distance via Importance Sparsification
▶ Sample the OT plan randomly via importance sparsification: apply the

principle of Poisson sampling to sketch the kernel matrix Φ = [ϕmn] to s nonzero
elements:

Φ̃ = [ϕ̃mn], where ϕ̃mn =

{
ϕmn

q∗mn
with prob.q∗mn = min{1, qmns}

0 otherwise.
(16)
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Sampling probability qmn

Importance Sparsification for Sinkhorn Algorithm. JMLR, 2023.
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Approximated Sinkhorn Distance via Importance Sparsification
▶ Intuitively, when dmnp

∗
mn is large, we should sample it with a high probability.

However, p∗mn is unavailable.

▶ In practice, the sampling probability qmn is set as the upper bound of dmnp
∗
mn:

▶ Bounded distance/cost: dmn ≤ c0
▶ Bounded OT plan: p∗mn ≤ ρ0,m, ρ1,n

dmnp
∗
mn ≤ c0

√
ρ0,mρ1,n ⇒ qmn =

√
ρ0,mρ1,n∑

m,n
√
ρ0,mρ1,n

(17)

▶ Reduce the complexity from O(N2) to O(N logN) when s ≈ N logN .
▶ The approximation error between Wp,ϵ and W̃p,ϵ is bounded:

|Wp,ϵ − W̃p,ϵ| ≤ cϵ
√
N3−2α

s
, where c > 0, α ∈ (0.5, 1). (18)

Importance Sparsification for Sinkhorn Algorithm. JMLR, 2023.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance
When dim(X ) = 1, Wp has a closed form, related to 1D
histogram transform and equalization.

Wp(ρ0, ρ1) =
(∫ 1

0
|F−1(z)−G−1(z)|pdz

)1/p
, (19)

where F,G : X 7→ [0, 1] are CDF’s of ρ0 and ρ1.
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G(x)

z

Theorem 1
For 1D x1 ≤ ... ≤ xN and y1 ≤ ... ≤ yN , identity permutation leads to the optimal
transport between them.
▶ Given x = {xn}Nn=1 ∼ ρ0 and y = {yn}Nn=1 ∼ ρ1:

Wp(x,y) =
(∑N

n=1
|xn − ysort(n)|p

)1/p
, (20)

Sliced and radon Wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision, 2015.
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G(x)

z

Theorem 1
For 1D x1 ≤ ... ≤ xN and y1 ≤ ... ≤ yN , identity permutation leads to the optimal
transport between them.
▶ Given x = {xn}Nn=1 ∼ ρ0 and y = {yn}Nn=1 ∼ ρ1:

Wp(x,y) =
(∑N

n=1
|xn − ysort(n)|p

)1/p
, (20)

Sliced and radon Wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision, 2015.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

▶ Let θ ∼ pSD−1 be random projection directions,
and Rθ be the corresponding random
projection, i.e., Rθ(x) = 〈x, θ〉 for x ∼ ρ0, ρ1.

▶ Rθ pushes ρ0, ρ1 forward 1D distributions
Rθ#ρ0, Rθ#ρ1.

▶ Sliced-Wasserstein distance:

SWp(ρ0, ρ1)

:=Eθ∼pSD−1
[Wp(Rθ#ρ0, Rθ#ρ1)]

=

∫
θ∈SD−1

Wp(Rθ#ρ0, Rθ#ρ1)p(θ)dθ
(21)
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Sliced Wasserstein: A Surrogate of Wasserstein Distance
▶ Practical implementation:

▶ Finite samples: X = {xn}Nn=1 and Y = {yn}Nn=1
▶ Finite projections: {θl}Ll=1 ∼ pSD−1 .

▶ Sample-based sliced Wasserstein distance:

ŜWp(X,Y ) =
1

L

L∑
l=1

 min
P∈Π( 1

N
1N , 1

N
1N )

N∑
m,n=1

|θ>l xm − θ>l yn|ppmn

1/p

=
1

L

L∑
l=1

(
1

N
min
σ∈PN

N∑
n=1

|θ>l xm − θ>l yσ(n)|p
)1/p

=
1

L

L∑
l=1

(
1

N

N∑
n=1

|θ>l xsort(n) − θ>l ysort(n)|p
)1/p

(22)
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Extensions of Sliced Wasserstein: Max-sliced Wasserstein
▶ Max-sliced Wasserstein (MSW): Instead of randomly sampling projections,

learn the optimal one in an adversarial way:

MSWp(ρ0, ρ1) := max
θ∈SD−1

Wp(Rθ#ρ0, Rθ#ρ1). (23)

▶ Given samples:

M̂SWp(X,Y ) := max
θ∈SD−1

(
min
σ∈PN

N∑
n=1

|θ>xn − θ>yσ(n)|p
)1/p

. (24)

▶ MSWp is strongly equivalence to Wp: for p = 1, 2,

∃0 < c1 < c2, c1MSWp ≤ Wp ≤ c2MSWp. (25)
Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.
Subspace robust Wasserstein distances. ICML, 2019.
Strong equivalence between metrics of Wasserstein type. 2021.
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Extensions of Sliced Wasserstein: Generalized Sliced Wasserstein

▶ Generalized sliced Wasserstein (GSW): Replacing the linear projections to
nonlinear ones (by generalized Radon transformation or a neural network)

GSWp(ρ0, ρ1) :=

∫
Fθ∈Ω

Wp(Fθ#ρ0, Fθ#ρ1)p(θ)dθ,

MGSWp(ρ0, ρ1) := max
Fθ∈Ω

Wp(Fθ#ρ0, Fθ#ρ1)
(26)

where Fθ ∈ Ω is the generalized Radon transformation and θ is rotation angle.
▶ Alternating optimization is applied to compute these variants.

Generalized sliced wasserstein distances. NeurIPS, 2019.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance
▶ Linear projections used in SW often break the locality-preserving property.
▶ Nonlinear projections used in GSW requires additional learning.

Hilbert Curve Projection Distance: apply Hilbert curve, a special kind of
space-filling curve, to achieve projections with the locality-preserving property.

Linear 
Proj.

Hilbert
Curve Proj.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance
▶ A K-order Hilbert curve HK :

▶ Partition the [0, 1] and D-dimensional unit hyper-cube [0, 1]D into (2K)D parts.
▶ Construct a bijection between them.

▶ Space-filing curve H(x) = limK→∞HK(x) is a surjection H : [0, 1]→ [0, 1]d.
▶ H covers the entire hyper-cube and enjoys the locality-preserving property:

‖H(x)−H(y)‖2 ≤ 2
√
d+ 3|x− y|1/d, ∀x, y ∈ [0, 1]. (27)
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

▶ Given a probability measure ρ defined on a hyper-cube Ωρ, denote its Hilbert
curve as Hρ : [0, 1] 7→ Ωρ.

▶ The CDF of ρ along Hρ is gρ(t) = infs∈[0,t] ρ
(

Hρ([0, s])︸ ︷︷ ︸
A Borel set in Ωρ

)
, for t ∈ [0, 1].

▶ The Hilbert Curve Projection (HCP) distance determines OT plan via 1D
Wasserstein along Hilbert curve:

HCPp(ρ0, ρ1) :=
(∫ 1

0
‖Hρ0 ◦ g−1

ρ0︸ ︷︷ ︸
F−1

(z))−Hρ1 ◦ g−1
ρ1︸ ︷︷ ︸

G−1

(z))‖ppdz
) 1

p

(28)

Hilbert curve projection distance for distribution comparison. TPAMI, 2024.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

(a) (b) (c) (d)

1. Project D-dimensional samples along their K-order Hilbert curves, and determine
the OT plan accordingly. (O((N +M)DK))

2. Determine the OT plan via sorting the projected samples.
(O(N logN +M logM))

3. Compute the HCP distance by the raw samples and the OT plan.
Hilbert curve projection distance for distribution comparison. TPAMI, 2024.
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Summary
▶ Wp and its variants (e.g., SWp, MSWp HCPp, and so on) provide valid metrics

for probability measures.
▶ MSWp is strongly equivalent to Wp

▶ SWp is weakly equivalent to Wp

▶ HCPp is an upper bound of Wp

▶ Efficient approximation methods (Sinkhorn, Proximal Point, Bregman ADMM,
etc.) are proposed with the help of various regularizers.
▶ Sublinear convergence rate (i.e., O(1/ϵ2) steps to achieve ϵ-approximation)
▶ Reduce the complexity to O(N2)

▶ Structured OT plans (Low-rank and/or sparse OT plans) often lead to further
accelerations.
▶ The time complexity of low-rank OT is O(N2r) but it reduces memory cost and

improves robustness.
▶ Apply importance sparsification reduces the complexity to O(N logN)

▶ Potential applications:
▶ Distance-centric applications: design loss functions for representation and generative

models.
▶ OT plan-centric applications: solve matching problems and design models.
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Thanks!
5-min break and QA
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Part 1 Computational Optimal Transport (Hongteng Xu)
▶ Preliminaries and basic concepts
▶ Typical computation methods

Part 2 Representation Learning Driven by OT (Dixin Luo)
▶ OT-based multi-modal learning
▶ Monge gap and its Gromovization for information bottleneck

Part 3 Neural Network Design Driven by OT (Minjie Cheng)
▶ OT-based Transformer
▶ OT-based graph neural network

Part 4 Recent Progress in Generative Modeling (Hongteng Xu)
▶ OT-based flow matching
▶ Applications of optimal acceleration transport
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Motivation: How to Improve Representation Learning?
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h

▶ Representation learning aims to obtain informative and structured latent
representation of data, supporting downstream discriminative and generative tasks.

▶ Can we learn the encoder as an optimal transport map? What is its
benefit?
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Outline

1. Learning Encoders as an Optimal Transport Map
▶ Monge gap: a regularizer of neural optimal transport
▶ Gromov-Wasserstein distance and Gromov-Monge gap
▶ Gromov-Wasserstein Information Bottleneck

2. Optimal Transport Driven Multi-modal Learning
▶ Gromov-Wasserstein barycenter for kernel fusion
▶ Hierarchical optimal transport for multi-modal representation
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Benefits and Challenges of OT Encoders
Let’s start with a simple scenario: learning an OT encoder as a Monge map in
T : X 7→ X under a cost function c, without dimension reduction, i.e.,

T ∗ = arg inf
T

∫
x∈X

c(x, T (x))dx, s.t. ρtarget = T#ρsource. (29)

A natural, physically meaningful way to suppress over-fitting and mode collapse
▶ Suppress the folding of latent space by minimizing the cost/geometric distortion:
▶ The norm-induced (c(x, y) = ‖x− y‖p) latent space tends to inherit the

Wasserstein geometry:

For ρ0, ρ1 ∈ P(X ), Wp(ρ0, ρ1) ≈ ‖T ∗
#ρ0, T

∗
#ρ1‖p. (30)

▶ Almost everywhere reversible.
Challenges
▶ As aforementioned, Monge map may not exist.
▶ Even if it exists, it is hard to compute it exactly.
▶ Learning T as a neural network (i.e., neural transport) often suffers over-fitting.
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Monge Gap: An Effective Regularizer of Neural Transport
▶ Recall that if the optimal transport map T ∗ exists, it determines a

transport plan π∗, so
Wp(ρ0, ρ1) ≤Mp(ρ0, ρ1). (31)

▶ Therefore, given an encoder T , we can define and penalize a Monge gap to make
it approach to an OT map:

MGcρ(T ) = Ex∼ρ[c(x, T (x))]︸ ︷︷ ︸
≥Mp(ρ,T#ρ)

− inf
π∈Π(ρ,T#ρ)

Ex,y∼π[c(x, y)]︸ ︷︷ ︸
=W(ρ,T#ρ)

.
(32)

▶ Given X = {xn}Nn=1 ∼ ρ, T (xn) ∼ T#ρ:

MGcρ(T ) =
1

N

N∑
n=1

c(xn, T (xn))−min
P∈Π
〈DT ,P 〉1/2, (33)

where D = [c(xn, T (xm))] ∈ RN×N .
The Monge Gap: A Regularizer to Learn All Transport Maps. ICML, 2023

39 / 146



Monge Gap: An Effective Regularizer of Neural Transport
▶ Recall that if the optimal transport map T ∗ exists, it determines a

transport plan π∗, so
Wp(ρ0, ρ1) ≤Mp(ρ0, ρ1). (31)

▶ Therefore, given an encoder T , we can define and penalize a Monge gap to make
it approach to an OT map:

MGcρ(T ) = Ex∼ρ[c(x, T (x))]︸ ︷︷ ︸
≥Mp(ρ,T#ρ)

− inf
π∈Π(ρ,T#ρ)

Ex,y∼π[c(x, y)]︸ ︷︷ ︸
=W(ρ,T#ρ)

.
(32)

▶ Given X = {xn}Nn=1 ∼ ρ, T (xn) ∼ T#ρ:

MGcρ(T ) =
1

N

N∑
n=1

c(xn, T (xn))−min
P∈Π
〈DT ,P 〉1/2, (33)

where D = [c(xn, T (xm))] ∈ RN×N .
The Monge Gap: A Regularizer to Learn All Transport Maps. ICML, 2023

39 / 146



Monge Gap: An Effective Regularizer of Neural Transport
▶ Recall that if the optimal transport map T ∗ exists, it determines a

transport plan π∗, so
Wp(ρ0, ρ1) ≤Mp(ρ0, ρ1). (31)

▶ Therefore, given an encoder T , we can define and penalize a Monge gap to make
it approach to an OT map:

MGcρ(T ) = Ex∼ρ[c(x, T (x))]︸ ︷︷ ︸
≥Mp(ρ,T#ρ)

− inf
π∈Π(ρ,T#ρ)

Ex,y∼π[c(x, y)]︸ ︷︷ ︸
=W(ρ,T#ρ)

.
(32)

▶ Given X = {xn}Nn=1 ∼ ρ, T (xn) ∼ T#ρ:

MGcρ(T ) =
1

N

N∑
n=1

c(xn, T (xn))−min
P∈Π
〈DT ,P 〉1/2, (33)

where D = [c(xn, T (xm))] ∈ RN×N .
The Monge Gap: A Regularizer to Learn All Transport Maps. ICML, 2023 39 / 146



Monge Gap: An Effective Regularizer of Neural Transport

Useful properties:
▶ MGcρ(T ) ≥ 0, ∀f .
▶ T is an OT map between ρ and T#ρ iff MGcρ(T ) = 0.

Regularizing representation learning by
Monge Gap: given a source distribution µ
and a target distribution ν in (X , c):

min
T :X 7→X

Loss(T#µ, ν)︸ ︷︷ ︸
target fitting

+λMGcρ(T )︸ ︷︷ ︸
c-optimality

. (34)

The Monge Gap: A Regularizer to Learn All Transport Maps. ICML, 2023
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How to Apply Monge Gap across Incomparable Spaces?
<latexit sha1_base64="7fmSjZVMzD1x2zLXPX3/awSnvyE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdJ72nXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs3ziletVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AFuro3q</latexit>px

<latexit sha1_base64="+qqeNhg7gs2baKY/L31S1IZaCLI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqhP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBzoOM9Q==</latexit>

f
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pz = f#px

▶ In general, px and pz are in different spaces (representation learning achieves
information compression).

▶ MGcpx(f) becomes inapplicable because both Mp and Wp are undefined across
incomparable spaces.

▶ Solution: Gromovization of Monge gap by defining OT distance across
different spaces.
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How to Apply Monge Gap across Incomparable Spaces?
<latexit sha1_base64="7fmSjZVMzD1x2zLXPX3/awSnvyE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdJ72nXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs3ziletVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AFuro3q</latexit>px

<latexit sha1_base64="+qqeNhg7gs2baKY/L31S1IZaCLI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqhP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBzoOM9Q==</latexit>

f

<latexit sha1_base64="GUevxLJViCaj9KsmGG13mMdh7k4="></latexit>

pz = f#px

▶ In general, px and pz are in different spaces (representation learning achieves
information compression).

▶ MGcpx(f) becomes inapplicable because both Mp and Wp are undefined across
incomparable spaces.

▶ Solution: Gromovization of Monge gap by defining OT distance across
different spaces.
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Gromovization of Classic OT Distances

Facundo MemoliGaspard Monge Leonid Kantorovich Karl-Theodor Sturm Mikhail Gromov

1980s
Compare metric spaces

Gromov-Hausdorff Distance

2006-2011
Compare metric measure spaces

Gromov-Wasserstein Distance

18-20th Century
Compare distributions

Monge distance, Wasserstein Distance

On the geometry of metric measure spaces. Acta Mathematica, 2006.
Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational
mathematics, 2011.
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Gromov-Monge Distance: Pursue OT Map across Spaces
<latexit sha1_base64="+9w58ZwVNeRby2qCxjF+5cAkjnM=">AAACAXicdVDLSgMxFM34rPU16kZwEyxChVIy09rWXdGNywr2Ae0wZNK0Dc08SDJCGerGX3HjQhG3/oU7/8ZMW0FFD1w4nHMv997jRZxJhdCHsbS8srq2ntnIbm5t7+yae/stGcaC0CYJeSg6HpaUs4A2FVOcdiJBse9x2vbGl6nfvqVCsjC4UZOIOj4eBmzACFZacs3DfM/HakQwTzrTAuwXYE+MQhedumYOFc9rFfvMhqiIUNUuVVJiV8t2CVpaSZEDCzRc873XD0ns00ARjqXsWihSToKFYoTTabYXSxphMsZD2tU0wD6VTjL7YApPtNKHg1DoChScqd8nEuxLOfE93ZmeK397qfiX143VoOYkLIhiRQMyXzSIOVQhTOOAfSYoUXyiCSaC6VshGWGBidKhZXUIX5/C/0nLLlqVYuW6nKtfLOLIgCNwDPLAAlVQB1egAZqAgDvwAJ7As3FvPBovxuu8dclYzByAHzDePgHuvZXx</latexit>

(X , d, ω0)
<latexit sha1_base64="3Xvst5V3arv9uQMsDuW+j2w2fYA=">AAACAXicdVDLSsNAFJ3UV62vqBvBzWARKpSSFIntrujGZQX7kCaEyXTaDp1MwsxEKKFu/BU3LhRx61+482+ctBVU9MCFwzn3cu89QcyoVJb1YeSWlldW1/LrhY3Nre0dc3evLaNEYNLCEYtEN0CSMMpJS1HFSDcWBIUBI51gfJH5nVsiJI34tZrExAvRkNMBxUhpyTcPSm6I1Agjlt5MyxCXoStGkW+f+GbRqlgajgMzYtcsW5N6vVat1qE9syyrCBZo+ua7249wEhKuMENS9mwrVl6KhKKYkWnBTSSJER6jIelpylFIpJfOPpjCY6304SASuriCM/X7RIpCKSdhoDuzc+VvLxP/8nqJGtS8lPI4UYTj+aJBwqCKYBYH7FNBsGITTRAWVN8K8QgJhJUOraBD+PoU/k/a1YrtVJyr02LjfBFHHhyCI1ACNjgDDXAJmqAFMLgDD+AJPBv3xqPxYrzOW3PGYmYf/IDx9gnkopXr</latexit>

(Y, c, ω1)

<latexit sha1_base64="Ydtr0VSbcWb5ZnCUGYrefwinsrQ=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0WsICFJa1p3RTcuK9gHtKFMJpN26OTBzERaQj/CjQtF3Po97vwbJ20FFT1w4XDOvdx7jxszKqRhfGi5ldW19Y38ZmFre2d3r7h/0BZRwjFp4YhFvOsiQRgNSUtSyUg35gQFLiMdd3yd+Z17wgWNwjs5jYkToGFIfYqRVFLHK0/OJ6dng2LJ0C/rtnVhQUM3jJpVsTNi1apWBZpKyVACSzQHxfe+F+EkIKHEDAnRM41YOinikmJGZoV+IkiM8BgNSU/REAVEOOn83Bk8UYoH/YirCiWcq98nUhQIMQ1c1RkgORK/vUz8y+sl0q87KQ3jRJIQLxb5CYMygtnv0KOcYMmmiiDMqboV4hHiCEuVUEGF8PUp/J+0Ld20dfu2WmpcLePIgyNwDMrABDXQADegCVoAgzF4AE/gWYu1R+1Fe1205rTlzCH4Ae3tE3cBjwc=</latexit>

d(x, x→)

Push forward across spaces

<latexit sha1_base64="drGvets+KJpHALdFxONk5W6j9nY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4TyAuSJcxOOsmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsriAXXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ShRDJssEpHqBFSj4BKbhhuBnVghDQOB7WByP/fbT6g0j2TDTGP0QzqSfMgZNVaqN/rFklt2FyDrxMtICTLU+sWv3iBiSYjSMEG17npubPyUKsOZwFmhl2iMKZvQEXYtlTRE7aeLQ2fkwioDMoyULWnIQv09kdJQ62kY2M6QmrFe9ebif143McNbP+UyTgxKtlw0TAQxEZl/TQZcITNiagllittbCRtTRZmx2RRsCN7qy+ukdVX2KuVK/bpUvcviyMMZnMMleHADVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPszuM4w==</latexit>

T
<latexit sha1_base64="syYNd6xbAJkhnkMcWbLPWLQ2JBE=">AAAB9HicdVDLSgMxFM34rPVVdekmWMQWpGSKjO2u6MZlhb6gHUomzbShmcyYZIpl6He4caGIWz/GnX9jpq2gogfu5XDOveTmeBFnSiP0Ya2srq1vbGa2sts7u3v7uYPDlgpjSWiThDyUHQ8rypmgTc00p51IUhx4nLa98XXqtydUKhaKhp5G1A3wUDCfEayN5JJCo3BfPDftrFjs5/KohAwcB6bEriDbkGq1Ui5XoT23EMqDJer93HtvEJI4oEITjpXq2ijSboKlZoTTWbYXKxphMsZD2jVU4IAqN5kfPYOnRhlAP5SmhIZz9ftGggOlpoFnJgOsR+q3l4p/ed1Y+xU3YSKKNRVk8ZAfc6hDmCYAB0xSovnUEEwkM7dCMsISE21yypoQvn4K/yetcsl2Ss7tRb52tYwjA47BCSgAG1yCGrgBddAEBNyBB/AEnq2J9Wi9WK+L0RVruXMEfsB6+wRKZ5CF</latexit>

c(T (x), T (x→))

<latexit sha1_base64="0HVdcE5ayjmwIE3pyjgp7zQRJK8="></latexit>

T#ω0 = ω1

<latexit sha1_base64="vtUhjvouiS6k76ttA9H6+OxdfEI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1Ku1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOnLjQc=</latexit>x

<latexit sha1_base64="ktTHmCXzA3PGbr9YxBrHu70ILKk=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjF6IrvGoEeiF49o5JEAIbNDL0yYnd3MzBrJhj/w4kFjvPpH3vwbB9iDgpV0UqnqTneXHwuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLV8qlGwSXWDTcCW7FCGvoCm/7oZuo3H1FpHskHM46xG9KB5AFn1Fjp/um0Vyy5ZXcGsky8jJQgQ61X/Or0I5aEKA0TVOu258amm1JlOBM4KXQSjTFlIzrAtqWShqi76ezSCTmxSp8EkbIlDZmpvydSGmo9Dn3bGVIz1IveVPzPaycmuOqmXMaJQcnmi4JEEBOR6dukzxUyI8aWUKa4vZWwIVWUGRtOwYbgLb68TBrnZa9SrtxdlKrXWRx5OIJjOAMPLqEKt1CDOjAI4Ble4c0ZOS/Ou/Mxb8052cwh/IHz+QNKUo04</latexit>

x→

<latexit sha1_base64="7AyVmUykhxoK1FKl7S3VgTAxnbg=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRmLEC2mNQY9ELx4xoUACDdkuW9iw3Ta7WyNp+A1ePGiMV3+QN/+NW+hBwZdM8vLeTGbm+TFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRUlklCXRDySXR8rypmgrmaa024sKQ59Tjv+5C7zO49UKhaJlp7G1AvxSLCAEayN5LaqT+cXg3LFrtlzoFXi5KQCOZqD8ld/GJEkpEITjpXqOXasvRRLzQins1I/UTTGZIJHtGeowCFVXjo/dobOjDJEQSRNCY3m6u+JFIdKTUPfdIZYj9Wyl4n/eb1EBzdeykScaCrIYlGQcKQjlH2OhkxSovnUEEwkM7ciMsYSE23yKZkQnOWXV0n7subUa/WHq0rjNo+jCCdwClVw4BoacA9NcIEAg2d4hTdLWC/Wu/WxaC1Y+cwx/IH1+QO1lI37</latexit>

T (x→)

<latexit sha1_base64="z9Xr435S6+chjAPHnajFRL218bk=">AAAB63icbVBNSwMxEJ31s9avqkcvwSLUS9kVqR6LXjxW6Be0S8mm2TY0yS5JVixL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMviDnTxnW/nbX1jc2t7cJOcXdv/+CwdHTc1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+55EqzSLZNNOY+gKPJAsZwSaTmpWni0Gp7FbdOdAq8XJShhyNQemrP4xIIqg0hGOte54bGz/FyjDC6azYTzSNMZngEe1ZKrGg2k/nt87QuVWGKIyULWnQXP09kWKh9VQEtlNgM9bLXib+5/USE974KZNxYqgki0VhwpGJUPY4GjJFieFTSzBRzN6KyBgrTIyNp2hD8JZfXiXty6pXq9Yersr12zyOApzCGVTAg2uowz00oAUExvAMr/DmCOfFeXc+Fq1rTj5zAn/gfP4AVHONyg==</latexit>

T (x)

Given two metric-measure (mm) spaces (X , d, ρ0) and (Y, c, ρ1), the p-order
Gromov-Monge distance between them is

GMp(X ,Y) :=
(
inf
T

∫
X×X

|d(x, x′)− c(T (x), T (x′))|p︸ ︷︷ ︸
:=r(x,x′,T (x),T (x′))

ρ0(x)ρ0(x
′)dxdx′

)1/p
,

s.t. ρ1 = T#ρ0,

(35)

where r is relational distance.
Distance distributions and inverse problems for metric measure spaces. Studies in Applied Mathematics, 2022.
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Gromov-Wasserstein Distance: Pursue OT Plan across Spaces
<latexit sha1_base64="+9w58ZwVNeRby2qCxjF+5cAkjnM=">AAACAXicdVDLSgMxFM34rPU16kZwEyxChVIy09rWXdGNywr2Ae0wZNK0Dc08SDJCGerGX3HjQhG3/oU7/8ZMW0FFD1w4nHMv997jRZxJhdCHsbS8srq2ntnIbm5t7+yae/stGcaC0CYJeSg6HpaUs4A2FVOcdiJBse9x2vbGl6nfvqVCsjC4UZOIOj4eBmzACFZacs3DfM/HakQwTzrTAuwXYE+MQhedumYOFc9rFfvMhqiIUNUuVVJiV8t2CVpaSZEDCzRc873XD0ns00ARjqXsWihSToKFYoTTabYXSxphMsZD2tU0wD6VTjL7YApPtNKHg1DoChScqd8nEuxLOfE93ZmeK397qfiX143VoOYkLIhiRQMyXzSIOVQhTOOAfSYoUXyiCSaC6VshGWGBidKhZXUIX5/C/0nLLlqVYuW6nKtfLOLIgCNwDPLAAlVQB1egAZqAgDvwAJ7As3FvPBovxuu8dclYzByAHzDePgHuvZXx</latexit>

(X , d, ω0)
<latexit sha1_base64="3Xvst5V3arv9uQMsDuW+j2w2fYA=">AAACAXicdVDLSsNAFJ3UV62vqBvBzWARKpSSFIntrujGZQX7kCaEyXTaDp1MwsxEKKFu/BU3LhRx61+482+ctBVU9MCFwzn3cu89QcyoVJb1YeSWlldW1/LrhY3Nre0dc3evLaNEYNLCEYtEN0CSMMpJS1HFSDcWBIUBI51gfJH5nVsiJI34tZrExAvRkNMBxUhpyTcPSm6I1Agjlt5MyxCXoStGkW+f+GbRqlgajgMzYtcsW5N6vVat1qE9syyrCBZo+ua7249wEhKuMENS9mwrVl6KhKKYkWnBTSSJER6jIelpylFIpJfOPpjCY6304SASuriCM/X7RIpCKSdhoDuzc+VvLxP/8nqJGtS8lPI4UYTj+aJBwqCKYBYH7FNBsGITTRAWVN8K8QgJhJUOraBD+PoU/k/a1YrtVJyr02LjfBFHHhyCI1ACNjgDDXAJmqAFMLgDD+AJPBv3xqPxYrzOW3PGYmYf/IDx9gnkopXr</latexit>

(Y, c, ω1)

<latexit sha1_base64="MihAFrsYvNEbiP9kdIg6kmPHVpI=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBaxgpSkSGxvRS8eK9gPaEPZbDft0s0m7G6EUPojvHhQxKu/x5v/xk1bQUUfDDzem2Fmnh9zprRtf1i5ldW19Y38ZmFre2d3r7h/0FZRIgltkYhHsutjRTkTtKWZ5rQbS4pDn9OOP7nO/M49lYpF4k6nMfVCPBIsYARrI3VIOT1PT88GxZJdsQ1cF2XEqdmOIfV6rVqtI2du2XYJlmgOiu/9YUSSkApNOFaq59ix9qZYakY4nRX6iaIxJhM8oj1DBQ6p8qbzc2foxChDFETSlNBorn6fmOJQqTT0TWeI9Vj99jLxL6+X6KDmTZmIE00FWSwKEo50hLLf0ZBJSjRPDcFEMnMrImMsMdEmoYIJ4etT9D9pVyuOW3FvL0qNq2UceTiCYyiDA5fQgBtoQgsITOABnuDZiq1H68V6XbTmrOXMIfyA9fYJbOGPAQ==</latexit>

c(y, y→)

<latexit sha1_base64="Ydtr0VSbcWb5ZnCUGYrefwinsrQ=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0WsICFJa1p3RTcuK9gHtKFMJpN26OTBzERaQj/CjQtF3Po97vwbJ20FFT1w4XDOvdx7jxszKqRhfGi5ldW19Y38ZmFre2d3r7h/0BZRwjFp4YhFvOsiQRgNSUtSyUg35gQFLiMdd3yd+Z17wgWNwjs5jYkToGFIfYqRVFLHK0/OJ6dng2LJ0C/rtnVhQUM3jJpVsTNi1apWBZpKyVACSzQHxfe+F+EkIKHEDAnRM41YOinikmJGZoV+IkiM8BgNSU/REAVEOOn83Bk8UYoH/YirCiWcq98nUhQIMQ1c1RkgORK/vUz8y+sl0q87KQ3jRJIQLxb5CYMygtnv0KOcYMmmiiDMqboV4hHiCEuVUEGF8PUp/J+0Ld20dfu2WmpcLePIgyNwDMrABDXQADegCVoAgzF4AE/gWYu1R+1Fe1205rTlzCH4Ae3tE3cBjwc=</latexit>

d(x, x→)

<latexit sha1_base64="T5nkiFK4JcWeZXd7DeBqpWLhgZc="></latexit>

r(x, x→, y, y→)
Relational distance across spaces

p-order Gromov-Wasserstein distance: Minimize expected relational distance
r(x, x′, y, y′) = |d(x, x′)− c(y, y′)|p, i.e.,

GWp(X ,Y) :=
(

inf
π∈Π(ρ0,ρ1)

∫
X 2×Y2

Relational distance︷ ︸︸ ︷
r(x, x′, y, y′) π(x, y)π(x′, y′)dxdx′dydy′︸ ︷︷ ︸

E(x,y),(x′,y′)∼π×π [r(x,x
′,y,y′)]

)1/p
. (36)

On the geometry of metric measure spaces. Acta Mathematica, 2006.
Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational
mathematics, 2011.
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Gromov-Wasserstein Distance: Pursue OT Plan across Spaces
<latexit sha1_base64="+9w58ZwVNeRby2qCxjF+5cAkjnM=">AAACAXicdVDLSgMxFM34rPU16kZwEyxChVIy09rWXdGNywr2Ae0wZNK0Dc08SDJCGerGX3HjQhG3/oU7/8ZMW0FFD1w4nHMv997jRZxJhdCHsbS8srq2ntnIbm5t7+yae/stGcaC0CYJeSg6HpaUs4A2FVOcdiJBse9x2vbGl6nfvqVCsjC4UZOIOj4eBmzACFZacs3DfM/HakQwTzrTAuwXYE+MQhedumYOFc9rFfvMhqiIUNUuVVJiV8t2CVpaSZEDCzRc873XD0ns00ARjqXsWihSToKFYoTTabYXSxphMsZD2tU0wD6VTjL7YApPtNKHg1DoChScqd8nEuxLOfE93ZmeK397qfiX143VoOYkLIhiRQMyXzSIOVQhTOOAfSYoUXyiCSaC6VshGWGBidKhZXUIX5/C/0nLLlqVYuW6nKtfLOLIgCNwDPLAAlVQB1egAZqAgDvwAJ7As3FvPBovxuu8dclYzByAHzDePgHuvZXx</latexit>

(X , d, ω0)
<latexit sha1_base64="3Xvst5V3arv9uQMsDuW+j2w2fYA=">AAACAXicdVDLSsNAFJ3UV62vqBvBzWARKpSSFIntrujGZQX7kCaEyXTaDp1MwsxEKKFu/BU3LhRx61+482+ctBVU9MCFwzn3cu89QcyoVJb1YeSWlldW1/LrhY3Nre0dc3evLaNEYNLCEYtEN0CSMMpJS1HFSDcWBIUBI51gfJH5nVsiJI34tZrExAvRkNMBxUhpyTcPSm6I1Agjlt5MyxCXoStGkW+f+GbRqlgajgMzYtcsW5N6vVat1qE9syyrCBZo+ua7249wEhKuMENS9mwrVl6KhKKYkWnBTSSJER6jIelpylFIpJfOPpjCY6304SASuriCM/X7RIpCKSdhoDuzc+VvLxP/8nqJGtS8lPI4UYTj+aJBwqCKYBYH7FNBsGITTRAWVN8K8QgJhJUOraBD+PoU/k/a1YrtVJyr02LjfBFHHhyCI1ACNjgDDXAJmqAFMLgDD+AJPBv3xqPxYrzOW3PGYmYf/IDx9gnkopXr</latexit>

(Y, c, ω1)

<latexit sha1_base64="MihAFrsYvNEbiP9kdIg6kmPHVpI=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBaxgpSkSGxvRS8eK9gPaEPZbDft0s0m7G6EUPojvHhQxKu/x5v/xk1bQUUfDDzem2Fmnh9zprRtf1i5ldW19Y38ZmFre2d3r7h/0FZRIgltkYhHsutjRTkTtKWZ5rQbS4pDn9OOP7nO/M49lYpF4k6nMfVCPBIsYARrI3VIOT1PT88GxZJdsQ1cF2XEqdmOIfV6rVqtI2du2XYJlmgOiu/9YUSSkApNOFaq59ix9qZYakY4nRX6iaIxJhM8oj1DBQ6p8qbzc2foxChDFETSlNBorn6fmOJQqTT0TWeI9Vj99jLxL6+X6KDmTZmIE00FWSwKEo50hLLf0ZBJSjRPDcFEMnMrImMsMdEmoYIJ4etT9D9pVyuOW3FvL0qNq2UceTiCYyiDA5fQgBtoQgsITOABnuDZiq1H68V6XbTmrOXMIfyA9fYJbOGPAQ==</latexit>

c(y, y→)
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d(x, x→)

<latexit sha1_base64="T5nkiFK4JcWeZXd7DeBqpWLhgZc="></latexit>

r(x, x→, y, y→)
Relational distance across spaces

p-order Gromov-Wasserstein distance: Minimize expected relational distance
r(x, x′, y, y′) = |d(x, x′)− c(y, y′)|p, i.e.,

GWp(X ,Y) :=
(

inf
π∈Π(ρ0,ρ1)

∫
X 2×Y2

Relational distance︷ ︸︸ ︷
r(x, x′, y, y′) π(x, y)π(x′, y′)dxdx′dydy′︸ ︷︷ ︸

E(x,y),(x′,y′)∼π×π [r(x,x
′,y,y′)]

)1/p
. (36)

On the geometry of metric measure spaces. Acta Mathematica, 2006.
Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational
mathematics, 2011.
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r(x, x→, y, y→)
Relational distance across spaces

Given X = {xm}Mm=1 with a probability measure ρ0, and Y = {yn}Nn=1 with ρ1:

GWp(DX ,DY ) =
(

min
P∈Π(ρ0,ρ1)

∑M

m,m′=1

∑N

n,n′=1
r(xm, xm′ , yn, yn′)pmnpm′n′

)1/p
, (37)

where DX = [d(xn, x
′
n)], DY = [c(yn, y

′
n)].

▶ π∗ or P ∗: the optimal transport plan between samples.
▶ π∗ × π∗ or P ∗ ⊗ P ∗: the optimal transport plan between sample pairs.
▶ Useful properties: Translation-, rotation-, and permutation-invariance
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Typical Computation Methods of GW Distance
▶ When p = 2, c(·, ·) and d(·, ·) are Euclidean metrics, GW distance can be

rewritten in a matrix format:

min
P∈Π(ρ0,ρ1)

〈C − 2DXPD>
Y ,P 〉. (38)

▶ DX = [‖xn − x′n‖22], DY = [‖yn − y′n‖22]
▶ C = (X �X)1dX×N + 1N×dY (Y � Y )>.

Gromov-Wasserstein averaging of kernel and distance matrices. ICML, 2016.

▶ Given N samples, Conditional Gradient (CG) descent leads to O(N3) and
sparse OT plans. In the k-th iteration:

P̃ = arg min
P∈Π(ρ0,ρ1)

〈C − 2DXP (k)D>
Y︸ ︷︷ ︸

O(N3)

,P 〉

P (k+1) = (1− τ (k))P (k) + τ (k)P̃ , where τ (k) is determined by line-search.
(39)

Optimal transport for structured data with application on graphs. ICML, 2019.
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Typical Computation Methods of GW Distance
▶ Similar to Wasserstein distance, adding entropy and KL-divergence regularization

improves the smoothness of the problem.
min

P∈Π(ρ0,ρ1)
〈C − 2DXPD>

Y ,P 〉+ ϵH(P ). (40)

▶ Iterative Sinkhorn-scaling solves this problem, leading to faster convergence but
smooth OT plan

P (k+1) = arg min
P∈Π(ρ0,ρ1)

〈C − 2DXP (k)D>
Y ,P 〉+ ϵH(P ). (41)

Gromov-Wasserstein averaging of kernel and distance matrices. ICML, 2016.

▶ Iterative Proximal Gradient is also applicable, which computes exact GW
distance with adaptive Sinkhorn-scaling.

P (k+1) = arg min
P∈Π(ρ0,ρ1)

〈C − 2DXP (k)D>
Y ,P 〉+ ϵKL(P ‖P (k)). (42)

Scalable Gromov-Wasserstein learning for graph partitioning and matching. NeurIPS, 2019.
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Typical Computation Methods of GW Distance
▶ Bregman ADMM: Decouple doubly stochastic constraint of P . Alternating

optimization is applied to solve the problem in augmented Lagrangian form:

min
P∈Π(ρ0,·),S∈Π(·,ρ1),T=S

〈C − 2DXSD>
Y ,P 〉

⇒ min
P∈Π(ρ0,·),S∈Π(·,ρ1)

max
Z
〈C − 2DXSD>

Y ,P 〉+ 〈Z,T − S〉+ ϵBϕ(T ,S).
(43)

Each step has a closed-form solution when Bϕ = KL.
Gromov-Wasserstein factorization models for graph clustering. AAAI, 2020.
Representing graphs via Gromov-Wasserstein factorization. TPAMI, 2022.

▶ Sliced GW is a theoretically incorrect but practically useful surrogate of GW.
Sliced Gromov-Wasserstein. NeurIPS, 2019.
On assignment problems related to Gromov–Wasserstein distances on the real line. SIAM Journal on Imaging
Sciences, 2023.
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Gromovized Monge Gap

Accordingly, given X = {xn}Nn=1 defined in the mm-space (X , d, ρ), the Gromovized
Monge Gap of T is defined as

GMGd,rρ (T )

:=Ex,x′∼ρ×ρ[r(x, x
′, T (x), T (x′))]︸ ︷︷ ︸

≥GM(ρ,T#ρ)

− inf
π∈Π(ρ,T#ρ)

E(x,y),(x′,y′)π×π[r(x, x
′, y, y′)]︸ ︷︷ ︸

=GW(ρ,T#ρ)

=
1

N2

N∑
n,n′=1

r(xn, x
′
n, T (xn), T (x

′
n))−min

P∈Π

N∑
n,n′=1

N∑
m,m′=1

r(xn, x
′
n, ym, y

′
m),

(44)

Revisiting Counterfactual Regression through the Lens of Gromov-Wasserstein Information Bottleneck. Arxiv,
2024.
Disentangled Representation Learning with the Gromov-Monge Gap. ICLR, 2025.
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Representation Learning with Gromovized Monge Gap
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Representation
Model 

(Encoder)

Predictor
(Classifier/Regressor)

Suppose that x ∼ px. Given a dataset D = {(xn, yn)}Nn=1, we have

min
f,c

E(x,y)∼DLoss(c ◦ f(x), y) + λGMGd,rpx (f)

=min
f,c

1

N

N∑
n=1

Loss(c ◦ f(xn), yn) + λ
(‖DX −DZ‖2F

N2
−min

P∈Π
〈C − 2DXPD>

Z ,P 〉
)
.
(45)

▶ DX = [‖xn − x′n‖22], DZ = [‖f(xn)− f(x′n)‖22]
▶ C = (X �X)1D×N + 1N×D(X �X)>.
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The Connection to Information Bottleneck
<latexit sha1_base64="7fmSjZVMzD1x2zLXPX3/awSnvyE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdJ72nXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs3ziletVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AFuro3q</latexit>px

<latexit sha1_base64="+qqeNhg7gs2baKY/L31S1IZaCLI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqhP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBzoOM9Q==</latexit>

f

<latexit sha1_base64="GUevxLJViCaj9KsmGG13mMdh7k4="></latexit>

pz = f#px
<latexit sha1_base64="mQwOr8vA+lZ6/a0c12zZ5epNVkU=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0mKxPZW9OKxgmkLbSib7aZdutmE3Y0QQn+DFw+KePUHefPfuGkrqOiDgcd7M8zMCxLOlLbtD6u0tr6xuVXeruzs7u0fVA+PuipOJaEeiXks+wFWlDNBPc00p/1EUhwFnPaC2XXh9+6pVCwWdzpLqB/hiWAhI1gbyUtGeTYfVWt23TZwXVQQp2k7hrRazUajhZyFZds1WKEzqr4PxzFJIyo04VipgWMn2s+x1IxwOq8MU0UTTGZ4QgeGChxR5eeLY+fozChjFMbSlNBooX6fyHGkVBYFpjPCeqp+e4X4lzdIddj0cyaSVFNBlovClCMdo+JzNGaSEs0zQzCRzNyKyBRLTLTJp2JC+PoU/U+6jbrj1t3bi1r7ahVHGU7gFM7BgUtoww10wAMCDB7gCZ4tYT1aL9brsrVkrWaO4Qest0+MVI80</latexit>py<latexit sha1_base64="ExPOFqwgX7g7fJydxXWEELr0MCc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqsH6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4AyfeM8g==</latexit>c

Representation
Model 

(Encoder)

Predictor
(Classifier/Regressor)

The rationality of Gromovized Monge gap can be explained in the information
bottleneck framework:

min
f
−I(Z, Y )︸ ︷︷ ︸
Fitting Acc.

+ λI(X, Z)︸ ︷︷ ︸
Complexity Reg.

, where I(X,Z) = KL(p(X,Z)‖p(X)p(Z)). (46)

▶ Penalizing −I(Z, Y ) corresponds to fitting data, which is often implemented as
negative log-likelihood.

▶ Penalizing I(X,Z) regularizes the complexity of representation model.
The information bottleneck method. Allerton Conference on Communication, Control, and Computing, 1999.
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The Connection to Information Bottleneck
Given {xn}Nn=1 and f , the RBF kernel density estimations of the distributions are

p(X) =
1

N

N∑
n=1

κ(X,xn), p(Z) =
1

N

N∑
n=1

κ(Z, zn), p(X,Z) =
1

N

N∑
n=1

κ(X,xn)κ(Z, zn).

Based on N samples, the empirical mutual information between X and Z as

ÎN (Z,X; f) =
1

N

∑
n

log p(xn, zn)

p(xn)p(zn)
=

1

N

∑
n

log N
∑

m κ(xn, xm)κ(zn, zm)∑
m κ(xn, xm)

∑
m κ(zn, zm)

.

When using RBF kernel with bandwidth τ , we have

ÎN (Z,X) ≤ 1

2τ2

( 1

N2
‖DX −DZ‖2F − GW2

2(DX ,DZ)
)
+ CN =

GMGd,rρ (f)

2τ2
+ CN . (47)

Revisiting Counterfactual Regression through the Lens of Gromov-Wasserstein Information Bottleneck. Arxiv,
2024.
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Application in Graph Contrastive Learning

Layer 2
Node Embeddings

Layer 1
Node Embeddings

Layer 2
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Layer K
Node Embeddings

Layer K
Node Embeddings
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& Readout
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Application in Graph Contrastive Learning

Layer k
Node Embeddings

Layer k
Node Embeddings<latexit sha1_base64="IJSumRlOs3VTSBN7PjVzxWMqcuY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquSPVY9OKxgv2Adi3ZNNuGzWZDkhXK0h/hxYMiXv093vw3pu0etPXBwOO9GWbmBZIzbVz32ymsrW9sbhW3Szu7e/sH5cOjtk5SRWiLJDxR3QBrypmgLcMMp12pKI4DTjtBdDvzO09UaZaIBzOR1I/xSLCQEWys1Akfs2p0Ph2UK27NnQOtEi8nFcjRHJS/+sOEpDEVhnCsdc9zpfEzrAwjnE5L/VRTiUmER7RnqcAx1X42P3eKzqwyRGGibAmD5urviQzHWk/iwHbG2Iz1sjcT//N6qQmv/YwJmRoqyGJRmHJkEjT7HQ2ZosTwiSWYKGZvRWSMFSbGJlSyIXjLL6+S9kXNq9fq95eVxk0eRxFO4BSq4MEVNOAOmtACAhE8wyu8OdJ5cd6dj0VrwclnjuEPnM8f1xqPQw==</latexit>

f (k)

Layer k-1
Node Embeddings

Fitting Accuracy Complexity Regularization

<latexit sha1_base64="/aEbjb/1mtx0mAgejJ5C2LZ00rY=">AAACC3icbVC7TsMwFHV4lvIKMLJYrRDtUiUIFcYKBhiLRB+oCZHjOK1V5yHbQaqi7Cz8CgsDCLHyA2z8DU6bAVqOZPnonHt17z1uzKiQhvGtLS2vrK6tlzbKm1vbO7v63n5XRAnHpIMjFvG+iwRhNCQdSSUj/ZgTFLiM9NzxZe73HggXNApv5SQmdoCGIfUpRlJJjl6x3Ih5YhKoL+1nTnp1nN2ntXE9swQNYFy7qzt61WgYU8BFYhakCgq0Hf3L8iKcBCSUmCEhBqYRSztFXFLMSFa2EkFihMdoSAaKhiggwk6nt2TwSCke9COuXijhVP3dkaJA5OuqygDJkZj3cvE/b5BI/9xOaRgnkoR4NshPGJQRzIOBHuUESzZRBGFO1a4QjxBHWKr4yioEc/7kRdI9aZjNRvPmtNq6KOIogUNQATVggjPQAtegDToAg0fwDF7Bm/akvWjv2sesdEkreg7AH2ifP2sXmqM=</latexit>

X(k)
G→ → p(Y )

<latexit sha1_base64="p97RKuWWLzuOhA7z9fMAGG6wL8Y=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCG1S5UgVBgrGGAsEn2IJkSO47RWnYdsB6mKMrPwKywMIMTKF7DxNzhtBmg5kuWjc+7Vvfe4MaNCGsa3VlpaXlldK69XNja3tnf03b2uiBKOSQdHLOJ9FwnCaEg6kkpG+jEnKHAZ6bnjy9zvPRAuaBTeyklM7AANQ+pTjKSSHP3QciPmiUmgvrSfOelVdp/WxvXMEjSAce2u7uhVo2FMAReJWZAqKNB29C/Li3ASkFBihoQYmEYs7RRxSTEjWcVKBIkRHqMhGSgaooAIO52eksFjpXjQj7h6oYRT9XdHigKRb6sqAyRHYt7Lxf+8QSL9czulYZxIEuLZID9hUEYwzwV6lBMs2UQRhDlVu0I8QhxhqdKrqBDM+ZMXSfekYTYbzZvTauuiiKMMDsARqAETnIEWuAZt0AEYPIJn8AretCftRXvXPmalJa3o2Qd/oH3+AALJmnM=</latexit>

X(k)
G → p(Z)

<latexit sha1_base64="nEZMhCs+BGBlLGMNTSHcG/B4AtQ=">AAACDHicbVC7TsMwFHV4lvIqMLJYVEjtQJUgVBgrGGAsEm0jNaFyHKe16sSR7SBVUT6AhV9hYQAhVj6Ajb/BaTNAy5UsH51zru69x4sZlco0v42l5ZXVtfXSRnlza3tnt7K335U8EZh0MGdc2B6ShNGIdBRVjNixICj0GOl546tc7z0QISmP7tQkJm6IhhENKEZKU4NK1fE48+Uk1F9qZ4P0OrtPa+MTq545koYwrtl17TIb5rTgIrAKUAVFtQeVL8fnOAlJpDBDUvYtM1ZuioSimJGs7CSSxAiP0ZD0NYxQSKSbTo/J4LFmfBhwoV+k4JT93ZGiUOb7ameI1EjOazn5n9ZPVHDhpjSKE0UiPBsUJAwqDvNkoE8FwYpNNEBYUL0rxCMkEFY6v7IOwZo/eRF0TxtWs9G8Pau2Los4SuAQHIEasMA5aIEb0AYdgMEjeAav4M14Ml6Md+NjZl0yip4D8KeMzx/u0Jrj</latexit>

X(k→1)
G → p(X)

GW-based Implementation
<latexit sha1_base64="bDW2NY0GHiFjoMt2D1c61lBbyxc="></latexit>

min
f(k)

ωI(X,Z)→ I(Z, Y ) ▶ Complexity regularization:

I(X,Z)← GMG(f (k)) (48)

▶ Fitting Accuracy:

I(Z, Y )← −W(Z, Y ) (49)

▶ We can apply sliced
Wasserstein and sliced GW to
reduce computational costs.
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Graph-level Classification

Datasets Biochemical Molecular Graphs Social Networks
MUTAG DD PROTEINS NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

DGK 87.44±2.72 - 73.30±0.82 80.31±0.46 - 66.96±0.56 78.04±0.39 41.27±0.18
WL 80.72±3.00 - 72.92±0.56 80.01±0.50 - 72.30±3.44 68.82±0.41 46.06±0.21
Graph2Vec 83.15±9.25 - 73.30±2.05 73.22±1.81 - 71.10±0.54 75.78±1.03 47.86±0.26
InfoGraph 89.01±1.13 72.85±1.78 74.44±0.31 76.20±1.06 70.65±1.13 73.03±0.87 82.50±1.42 53.46±1.03
JOAOv2 87.67±0.79 77.40±1.15 74.07±1.10 78.36±0.53 69.33±0.34 70.83±0.25 86.42±1.45 56.03±0.27
InfoGraph 89.01±1.13 72.85±1.78 74.44±0.31 76.20±1.06 70.65±1.13 73.03±0.87 82.50±1.42 53.46±1.03
AD-GCL 88.74±1.85 75.79±0.87 73.28±0.47 73.91±0.77 72.02±0.56 70.21±0.68 90.07±0.85 54.33±0.32
GraphACL 89.88±1.07 79.05±0.51 75.29±0.46 - 74.26±0.48 74.53±0.39 - -
AutoGCL 85.15±1.10 75.75±0.60 69.73±0.40 78.32±0.50 71.40±0.70 72.00±0.40 86.60±1.50 55.71±0.20
HGCL 90.10±0.80 79.20±0.60 75.50±0.50 - 75.80±0.40 73.90±0.70 - -
GCL-SPAN 85.00±0.80 78.78±0.50 75.78±0.40 75.43±0.40 71.40±0.50 66.00±0.70 86.50±0.10 54.10±0.50
GCS 88.19±0.90 76.28±0.30 74.04±0.40 77.18±0.30 74.00±0.40 72.90±0.50 86.50±0.30 56.30±0.30
SEGA 90.21±0.66 78.76±0.57 76.01±0.42 79.00±0.72 74.12±0.47 73.58±0.44 90.21±0.65 56.13±0.49
GraphCL 86.80±1.34 78.62±0.40 74.39±0.45 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.48
w. AIOTB 91.30±0.86 79.30±0.31 75.85±0.27 79.57±0.31 74.10±1.02 73.65±0.68 90.57±0.86 56.62±0.57
SimGRACE 89.01±1.31 77.44±1.11 75.35±0.09 79.12±0.44 71.72±0.82 71.30±0.77 89.51±0.89 55.91±0.34
w. AIOTB 91.87±0.80 79.26±0.62 76.33±0.36 80.45±0.62 74.33±0.80 74.01±0.70 91.43±0.80 57.06±0.44
RGCL 87.66±1.01 78.86±0.48 75.03±0.43 78.14±1.08 70.92±0.65 71.85±0.84 90.34±0.58 56.38±0.40
w. AIOTB 91.44±0.91 79.77±0.40 76.35±0.39 79.87±0.52 73.98±0.74 74.45±0.86 91.81±0.45 57.20±0.58
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Graph-level Regression

Task Types Regression (RMSE↓) Classification (ROC-AUC %↑)
Datasets molesol mollipo molfreesolv molbace molbbbp molclintox moltox21 molsider
#Graphs 1,128 4,200 642 1,513 2,039 1,477 7,831 1,427
Avg. #Nodes 13.3 27.0 8.7 34.1 24.1 26.2 18.6 33.6
Avg. Node Degree 13.7 29.5 8.4 36.9 26.0 27.9 19.3 35.4
InfoGraph 1.34±0.18 1.01±0.02 10.01±4.82 74.74±3.60 66.33±2.79 64.50±5.32 69.74±0.57 60.54±0.90
MVGRL 1.43±0.15 0.96±0.04 9.02±1.98 74.20±2.31 67.24±1.39 73.84±4.25 70.48±0.83 61.94±0.94
JOAO 1.29±0.12 0.87±0.03 5.13±0.72 74.43±1.94 67.62±1.29 78.21±4.12 71.83±0.92 62.73±0.92
GCL-SPAN 1.22±0.05 0.80±0.02 4.53±0.46 76.74±2.02 69.59±1.34 80.28±2.42 72.83±0.62 64.87±0.88
AD-GCL 1.22±0.09 0.84±0.03 5.15±0.62 76.37±2.03 68.24±1.47 80.77±3.92 71.42±0.73 63.19±0.95
GraphCL 1.27±0.09 1.14±0.02 7.68±2.75 74.32±2.70 68.22±1.89 74.92±4.42 71.92±1.01 61.25±1.11
w. AIOTB 1.20±0.12 1.06±0.06 5.13±1.52 76.87±3.40 69.44±1.80 77.30±4.10 72.63±0.97 62.80±0.88
SimGRACE 1.30±0.04 1.03±0.03 5.12±0.71 76.44±2.89 69.08±1.11 81.03±4.30 72.55±0.44 62.64±0.82
w. AIOTB 1.22±0.05 0.91±0.03 4.48±0.68 77.52±3.01 69.75±0.92 82.56±4.10 73.30±0.62 63.42±0.80
RGCL 1.26±0.09 1.12±0.04 5.69±0.67 76.46±0.67 70.33±1.08 78.97±4.65 72.27±0.84 61.90±1.05
w. AIOTB 1.20±0.07 1.01±0.05 4.62±0.65 77.20±0.95 71.21±0.61 80.05±4.50 72.94±0.86 63.20±1.13
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Node-level Classification

Datasets Cora Citeseer Pubmed Squirrel Chameleon Texas
#Nodes 2,708 3,312 19,717 5,201 2,277 183
#Edges 5,429 4,732 44,338 198,423 31,371 279
#Features 1,433 3,703 500 2,089 2,325 1,703
GCN 87.14 79.60 86.19 34.80 58.82 74.59
w. AIOTB 87.68 79.86 86.70 35.65 59.33 74.85
GAT 88.03 80.52 85.20 35.89 58.73 76.39
w. AIOTB 88.41 81.05 85.88 36.26 59.08 77.84
ChebNet 85.94 79.15 87.95 36.81 56.37 83.61
w. AIOTB 86.54 79.59 88.46 36.75 56.63 84.43
BernNet 87.13 79.92 86.63 46.22 67.33 89.67
w. AIOTB 88.12 80.63 87.32 47.07 67.96 90.98
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When representing multi-modal data, besides
bridging sample and latent spaces, we also need
to compare and align distributions across
modalities.
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Two (Questionable) Assumptions on Multi-modal Learning

<latexit sha1_base64="5FrVcEbMZzOu+mvb/nUNp2Qw8eQ=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgqiTia1l047KCfWATwmQ6aYfOTMLMRKihXbnxV9y4UMStv+DOv3HSdqGtBy4czrmXe+8JE0aVdpxvq7CwuLS8Ulwtra1vbG7Z2zsNFacSkzqOWSxbIVKEUUHqmmpGWokkiIeMNMP+Ve4374lUNBa3epAQn6OuoBHFSBspsPc9jnQvjLK7YUA9RTlMgoeRF8USMTaigV12Ks4YcJ64U1IGU9QC+8vrxDjlRGjMkFJt10m0nyGpKWZkWPJSRRKE+6hL2oYKxInys/EfQ3holA40u00JDcfq74kMcaUGPDSd+dVq1svF/7x2qqMLP6MiSTUReLIoShnUMcxDgR0qCdZsYAjCkppbIe4hibA20ZVMCO7sy/OkcVxxzyqnNyfl6uU0jiLYAwfgCLjgHFTBNaiBOsDgETyDV/BmPVkv1rv1MWktWNOZXfAH1ucPEhOaGA==</latexit>

Zi ⇠ pz 8 i

Well-aligned multi-modal data Shared latent distribution
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Real-world Multi-modal Scenarios
Take healthcare data as an example:
▶ For patients:

▶ Only do some tests
▶ Have admissions in different hospitals

▶ For hospitals:
▶ Collect and store data independently

from different hospitals
▶ Complementary and heterogeneous

modalities

View 1
Blood 
Test

View 2
Drugs

View 3
Genetic 

Test

Hospital 1 Hospital 2 Hospital 3

Latent
Space

Same patient,
but unaligned 

Unaligned and incomplete samples + Clustered modalities in (incomparable)
latent spaces.
▶ Align samples across different modalities (Alignment)
▶ Cluster modalities and samples jointly (Co-clustering)

Optimal transport provide potential solutions.
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Traditional Multi-modal Learning Paradigms
▶ Multi-modal data [X1, ...,XS ] ∈ RN×(D1+...+DS).
▶ Learn latent representations implicitly or learn S encoders {fs : RDs 7→ Z}Ss=1.

Multi-kernel Fusion (MKF): Learn the encoders implicitly

maxU ,{αs}Ss=1
tr(U>K̄U), s.t. K̄ =

∑S

s=1
αsKs. (50)

Canonical Correlation Analysis (CCA):

min{fs,Us}Ss=1

∑
s 6=s′
‖Us ◦ fs(Xs)− Us′ ◦ fs′(Xs′)‖2F ,

s.t. (Us ◦ fs(Xs))
>Us ◦ fs(Xs) = I, ∀s

(51)

▶ How to make them applicable for unaligned data?
▶ How to introduce modality-level clustering structure?
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Extend MKF to Unaligned Data via GW Barycenters

GW
Barycenter

Kernel 1

Kernel 2

Kernel M

…

α1α1

α2α2

αMαM

Fused Kernel

…

Fuse kernels by solving a GW barycenter problem:

maxU ,{αs}Ss=1
tr(U>KU),

s.t. K̄ ∈ min
K

∑S

s=1
αsGW2

2(K,Ks)︸ ︷︷ ︸
GW barycenter

. (52)

Nested optimization:
1. Compute the barycenter iteratively

K̄ ← 1

S2

S∑
s=1

αsT
∗
s Ks(T

∗
s )

>, T ∗
s ← GW2(K̄,Ks). (53)

2. Plug the barycenter into the objective function:

maxU ,{αs}Ss=1
tr
(
U>
(∑S

s=1
αsT

∗
s Ks(T

∗
s )

>
)
U
)
. (54)

62 / 146



Extend MKF to Unaligned Data via GW Barycenters

GW
Barycenter

Kernel 1

Kernel 2

Kernel M

…

α1α1

α2α2

αMαM

Fused Kernel

…

Fuse kernels by solving a GW barycenter problem:

maxU ,{αs}Ss=1
tr(U>KU),

s.t. K̄ ∈ min
K

∑S

s=1
αsGW2

2(K,Ks)︸ ︷︷ ︸
GW barycenter

. (52)

Nested optimization:
1. Compute the barycenter iteratively

K̄ ← 1

S2

S∑
s=1

αsT
∗
s Ks(T

∗
s )

>, T ∗
s ← GW2(K̄,Ks). (53)

2. Plug the barycenter into the objective function:

maxU ,{αs}Ss=1
tr
(
U>
(∑S

s=1
αsT

∗
s Ks(T

∗
s )

>
)
U
)
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Extend MKF to Unaligned Data via GW Barycenters
When computing the kernels by latent codes, we obtain parametric kernels and the
Gromov-Wasserstein multi-modal alignment and clustering model:

maxU∈Π,{fs}Ss=1
tr(U>KU)︸ ︷︷ ︸

⇔minGW2
2(K̄,IC)

, s.t. K̄ ∈ min
K

∑S

s=1
αsGW2

2(K, K(fs)︸ ︷︷ ︸
param. kernel

).
(55)

Encoder 1

Encoder 2

Encoder M

:
:

:
:

Optimal 
Transports
for Alignment

Weighted GW Barycenter

Fused Kernel
for Clustering

Ground 
Truth

Estimation 
Error

Modality 1

Modality 2

Modality M

Kernel 1

Kernel 2

Kernel M

Gromov-Wasserstein multi-modal alignment and clustering. CIKM, 2022.
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Multi-modal Clustering Performance

Data type Datasets HandWritten Caltech 7 ORL Movies Prokaryotic
Algorithms ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Well-aligned
(β = 0)

MCCA 0.8269 0.7775 0.5313 0.4716 0.3475 0.4992 0.0989 0.0722 0.5620 0.1204
DCCAE 0.6537 0.6216 0.4110 0.3850 0.5625 0.7373 0.1572 0.1194 0.5070 0.1827
AttnAE 0.7505 0.6912 0.4600 0.4575 0.4600 0.6603 0.1880 0.1918 0.5390 0.2625
MVKSC 0.6749 0.6376 0.5196 0.2537 0.3013 0.5291 0.2285 0.2098 0.6188 0.3191

MultiNMF 0.8882 0.8279 0.4525 0.5120 0.6900 0.8100 0.1726 0.1856 0.5771 0.2495
50% unaligned

(β = 0.5)
CPM-GAN 0.7250 0.6069 0.3472 0.3151 0.1987 0.3703 0.1210 0.1753 0.3793 0.3294
MVC-UM - - 0.3958 0.3838 0.5863 0.7586 0.1831 0.1950 0.3950 0.0807
GWMAC 0.8469 0.8156 0.3541 0.5010 0.5322 0.7068 0.1993 0.2195 0.5515 0.3286

100% unaligned
(β = 1)

MVC-UM - - 0.3112 0.2456 0.5431 0.7452 0.1841 0.1953 0.4451 0.0554
GWMAC 0.8144 0.7546 0.3568 0.4945 0.5118 0.7026 0.1928 0.2138 0.5479 0.3259
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Extend CCA to Unaligned Data via Sliced Wasserstein
Sliced Wasserstein Canonical Correlation Analysis (SW-CCA):

min{fs,Us}Ss=1

∑
s 6=s′
SW2

2(Us ◦ fs(Xs), Us′ ◦ fs′(Xs′)),

s.t. (Us ◦ fs(Xs))
>Us ◦ fs(Xs) = I, ∀s

(56)

▶ Using SW distance does not require aligned data.
▶ It is differentiable, just requiring random projections and sorting operations.

Max-Sliced Wasserstein Canonical Correlation Analysis (MSW-CCA):

min{fs}Ss=1

∑
s 6=s′
MSW2

2(fs(Xs), fs′(Xs′)),

s.t. (Us ◦ fs(Xs))
>Us ◦ fs(Xs) = I, ∀s

(57)

▶ Treat Us as a linear random projector, i.e., Us : Z 7→ R, and learn it in an
adversarial way, we have

Differentiable Hierarchical Optimal Transport for Robust Multi-View Learning. TPAMI, 2022.
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Hierarchical Optimal Transport for Modality Clustering

Aligned
Labeled 
Data

Unaligned
Unlabeled 
Data

Wasserstein Space of The Views

Optimal Transport 
between Views

View 1
View 1 View 2 View 3 View 4

View 2
View 3

View 4

Classifier

f1

f4

f3

f2

View 1
Cluster 1 Cluster 2 Cluster 3

View 2
View 3

View 4

Optimal Transport 
between Views and Clusters

Label

View 1

View 2

View 3

View 4

Principle:
▶ Further extend SW-CCA
▶ Capture the relations among the modalities by their OT distances.

66 / 146



Hierarchical Optimal Transport for Modality Clustering
Extend SW-CCA: Learn the pairwise relations between different modalities.

min
{fs,Us}Ss=1,

W∈Π( 1
S
1S ,

1
S
1S)

∑
s 6=s′

wss′SW2
2(Us ◦ fs(Xs), Us′ ◦ fs′(Xs′))︸ ︷︷ ︸
Hierarchical OT

+ α
∥∥∑

s
(Us ◦ fs(Xs))

>Us ◦ fs(Xs)− I
∥∥2
F︸ ︷︷ ︸

CCA-Regularizer

+β H(W )︸ ︷︷ ︸
〈W ,logW 〉

.
(58)

▶ Lower level: the SW distance between different modalities’ sample sets.
▶ Upper level: Take the SW distances as the cost matrix, compute the EOT

between the group of modalities and itself. (Set wss = 0 to avoid trivial solutions)
▶ W ∗ indicates the clustering structure implicitly by the pairwise similarity between

different modalities.
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Performance on Multi-modal Classification
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Caltech7 Handwritten Cathgen
Differentiable Hierarchical Optimal Transport for Robust Multi-View Learning. TPAMI, 2022.

68 / 146



Summary

▶ Representation model can be effectively regularized to approach OT map
▶ Monge gap and its Gromovization provides a potential solution
▶ Achieve promising solution in graph representation learning

▶ Gromovize Wp leads to GWp.
▶ The algorithms of Wp are applicable under slight modification
▶ The problem becomes non-convex but the algorithms still lead to stationary points

▶ In multi-modal learning, OT distances help align and cluster different modalities.
▶ Robust to unaligned multi-modal samples
▶ Hierarchical optimal transport leads to a joint framework for sample- and

modality-level learning
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Thanks!
5-min break and QA
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Part 1 Computational Optimal Transport (Hongteng Xu)
▶ Preliminaries and basic concepts
▶ Typical computation methods

Part 2 Representation Learning Driven by OT (Dixin Luo)
▶ OT-based multi-modal learning
▶ Monge gap and its Gromovization for information bottleneck

Part 3 Neural Network Design Driven by OT (Minjie Cheng)
▶ OT-based Transformer
▶ OT-based graph neural network

Part 4 Recent Progress in Generative Modeling (Hongteng Xu)
▶ OT-based flow matching
▶ Applications of optimal acceleration transport
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Neural Network Design: Engineering or Art?

The progress of AI is mainly attributed to the development of model
architectures.
▶ Vision: AlexNet, VGG, ResNet, ViT, ...
▶ NLP: RNN, LSTM, BERT, GPT, ...
▶ Graph: Spatial and Spectral GNNs, Graph Transformer, ...

Essentially, the models serve to transform one data distribution to another.

However, till now, we only summarize very coarse and empirical design principle
for neural networks.
▶ The deeper, the larger, the better (Scaling Laws).
▶ Tricks: Dropout, Batchnorm, Non-smooth activations, Residual Connection, ...
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A Typical Example: SE(3)-Transformer

Classic SE(3) Attention Head

Softmax

<latexit sha1_base64="PFhhfJBcWn+Z7evAbgOKBiyLcso=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKmhJRKrLohuXVewD2lgmk0k7dJIJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jRoxKZVnfRmFhcWl5pbhaWlvf2Nwyt3dakscCkybmjIuOiyRhNCRNRRUjnUgQFLiMtN3RVea3H4iQlId3ahwRJ0CDkPoUI6WlvrnXcznz5DjQX3Kb3icVdmIfD4/Svlm2qtYEcJ7YOSmDHI2++dXzOI4DEirMkJRd24qUkyChKGYkLfViSSKER2hAupqGKCDSSSYXpPBQKx70udAvVHCi/u5IUCCzJXVlgNRQznqZ+J/XjZV/4SQ0jGJFQjwd5McMKg6zOKBHBcGKjTVBWFC9K8RDJBBWOrSSDsGePXmetE6rdq1auzkr1y/zOIpgHxyACrDBOaiDa9AATYDBI3gGr+DNeDJejHfjY1paMPKeXfAHxucP5KqWiA==</latexit>

R(l→1,h)

<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)

<latexit sha1_base64="FX7RNudIjn7t2TIT8yuG1KPO46g=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrEPaNeSzaZtaDZZkqxQ1j34V7x4UMSrf8Ob/8ZsuwetDoQMM99HJuNHjCrtOF9WYWFxaXmluFpaW9/Y3LK3d1pKxBKTJhZMyI6PFGGUk6ammpFOJAkKfUba/vgy89v3RCoq+K2eRMQL0ZDTAcVIG6lv7/V8wQI1Cc2V3KR3SYUdj47Svl12qs4U8C9xc1IGORp9+7MXCByHhGvMkFJd14m0lyCpKWYkLfViRSKEx2hIuoZyFBLlJdP8KTw0SgAHQprDNZyqPzcSFKosopkMkR6peS8T//O6sR6cewnlUawJx7OHBjGDWsCsDBhQSbBmE0MQltRkhXiEJMLaVFYyJbjzX/5LWidVt1atXZ+W6xd5HUWwDw5ABbjgDNTBFWiAJsDgATyBF/BqPVrP1pv1PhstWPnOLvgF6+Mb+46WFg==</latexit>

R(l,h)

<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)
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K(l,h)
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Q(l,h)
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X(l)

Graph or Point Cloud
Graph or Point Cloud

The Core of 3D Molecular Models (e.g., Uni-Mol)
▶ Pros: Large capacity, strong representation power, SE(3)-equivariance, ...
▶ Cons: High computational complexity, poor interpretability, ...

Uni-Mol: A Universal 3D Molecular Representation Learning Framework. ICLR, 2023.
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Motivation
Essentially, many existing NN layers work for information fusion

Message-Passing Self-Attention
Self-Attention Map

Fusion on graph Fusion in a continuous space

Develop OT-based surrogates for above layers, improving interpretability and
boosting performance
▶ Explore the alignment principle of information fusion through the lens of OT
▶ Connect the alignment principle to optimization
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Outline

1 Optimal Transport Driven Transformer
▶ Improved Transformer Based on Wasserstein Gradient Flow
▶ Extension for deep geometric learning

2 Optimal Transport Driven GNN
▶ Optimal Transport on Graph: From continuous to discrete structured scenarios
▶ Label Flow and Its Amortization for GNNs
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Revisit the Dynamic Definition of OT
The displacement interpolation determined by transport map T :
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ωt = (tT + (1→ t)Id)#ω0
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ω1 = T#ω0

What is the relationship between optimal transport and displacement
interpolation?
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Revisit The Dynamic Definition of OT

Definition 2 (Dynamic Formulation of Optimal Transport)

Let X ⊂ Rd be the Euclidean sample space. For ρ0, ρ1 ∈ P(X ), W2
2 (ρ0, ρ1)

corresponds to seeking a unique least–kinetic–energy flow (velocity field) v:

W2
2 (ρ0, ρ1) = inf

v(x,t)

∫ 1

0

∫
X

1

2
ρ(x, t)‖v(x, t)‖22dxdt︸ ︷︷ ︸
Kinetic Energy

, s.t. ∂tρ+∇x ·
(
vρ
)
= 0︸ ︷︷ ︸

Continuity Equation

(59)

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.
Numerische Mathematik, 2000.

▶ Solving the continuity equation with the optimal flow v∗ leads to the optimal
displacement interpolation between ρ0 and ρ1.
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Continuity Equation
▶ Continuity equation describes the time rate of

change of the fluid density (∂tρ(x, t)) at a fixed
point x in space.

∂tρ+∇x ·
(
vρ
)
= 0 (60)

▶ The rate equals to the rate of change of density by
convection (∇x · (vρ)).

Given a sample at time t, i.e., xt ∼ ρt, we have
dxt
dt = v(xt, t), xt+δt ≈ xt + δt · v(xt, t)︸ ︷︷ ︸

Euler step

. (61)

Obviously, the keypoint is modeling the flow v. When the flow is a neural
network, the Euler step corresponds to a ResNet.

Neural ordinary differential equations. NeurIPS, 2018.
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Wasserstein Gradient Flow: Connect Flow to Energy Functional
▶ Let E : P(X )→ R be an energy functional with first variation δE

δρ .
▶ The first variation of Wasserstein space analogies to the gradient of Euclidean space.

▶ The Wasserstein gradient flow of E is defined by

∂tρ = ∇x ·
(
ρ

−v︷ ︸︸ ︷
∇x

δE

δρ

)
︸ ︷︷ ︸

Continuity equation with v = −∇x
δE
δρ

⇔ ρt+δt = arg min
ρ∈P(X )

E(ρ) +
1

2δt
W2

2 (ρ, ρt). (62)

▶ Wasserstein gradient flow = Continuity equation with steepest descent velocity.
The variational formulation of the Fokker-Planck equation. SIAM Journal on Mathematical Analysis,
1998.

The design of v corresponds to the design of E.
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Imitate Transformer by Wasserstein Gradient Flow
▶ A typical choice of energy functional: the potential energy of particles

E(ρ) =
1

2

∫∫
X×X

κ(x, y)︸ ︷︷ ︸
Kernel

ρ(x)ρ(y)dxdy. (63)

▶ The flow v becomes

v = −∇x
δE

δρ
= −∇x(κ ∗ ρ) ⇔ v(x) = −1

2

∫
X
∇xκ(x, y)ρ(y)dy. (64)

▶ More specifically, when κ(x, y) = exp(x>WW>y), we have

v(x) =

∫
X
exp(x> W︸︷︷︸

:=W⊤
Q

W>︸︷︷︸
:=WK

y)(−WW>︸ ︷︷ ︸
:=WV

)yρ(y)dy. (65)

Congratulations! Now, we have a continuous counterpart of an
unnormalized attention layer with a structured QKV setting.
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Sinkformer: From Imitation to Improvement
▶ Revisit the potential energy: E(ρ) = 1

2

∫∫
X×X κ(x, y)︸ ︷︷ ︸

Kernel

ρ(x)ρ(y)︸ ︷︷ ︸
Assumed Independency

dxdy.

▶ Define an entropic OT-based energy

E∞(ρ) = inf
π∈Π(ρ,ρ)

1

2

∫∫
X×X

− logκ(x, y)π(x, y)︸ ︷︷ ︸
Coupling

dxdy − H(π)︸ ︷︷ ︸
Entropy

=
1

2

∫∫
X×X

− logκ(x, y)π∞(x, y)︸ ︷︷ ︸
OT plan

dxdy −H(π∞)

=
1

2

∫∫
X×X

π∞(x, y) log π
∞(x, y)

κ(x, y)
dxdy.

(66)

▶ Sinkhorn scaling, i.e., π∞ = Nc ◦Nr ◦ · · · ◦Nc ◦Nr︸ ︷︷ ︸
M steps, with M → ∞

(κ).
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κ(x, y)
dxdy.

(66)

▶ Sinkhorn scaling, i.e., π∞ = Nc ◦Nr ◦ · · · ◦Nc ◦Nr︸ ︷︷ ︸
M steps, with M → ∞

(κ).
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Sinkformer: From Imitation to Improvement
▶ When applying E∞(ρ) and setting κ(x, y) = exp(x>WW>y), we have

v = −∇x
δE∞

δρ
=

∫
X
π∞(x, y)︸ ︷︷ ︸

Sinkhorn of κ

(−WW>)yρ(y)dy. (67)

▶ Given the input of the h-th head of the l-th layer, i.e., X(l−1) ∈ RN×D, we have
T (l,h) = SM (X(l−1)>W (l,h)>W (l,h)X(l−1))(−W (l,h)>W (l,h))X(l−1). (68)

Sinkformer 
Doubly-Stochastic Attention Head

Sinkhorn
<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="P1SHArS3puTOY32oA8rlhs0GhOk=">AAACGnicbVDLSsNAFJ3UV62vqEs3wSJU0JKIVJdFNy4r2Ac0sUwmk3boZCbMTIQS8h1u/BU3LhRxJ278GydtFlp7YJjDOfdy7z1+TIlUtv1tlJaWV1bXyuuVjc2t7R1zd68jeSIQbiNOuej5UGJKGG4roijuxQLDyKe464+vc7/7gIUknN2pSYy9CA4ZCQmCSksD0zl1fU4DOYn0l3az+7RGT0bH2ULVVTzOBmbVrttTWP+JU5AqKNAamJ9uwFESYaYQhVL2HTtWXgqFIojirOImEscQjeEQ9zVlMMLSS6enZdaRVgIr5EI/pqyp+rsjhZHM19SVEVQjOe/l4iKvn6jw0ksJixOFGZoNChNqKW7lOVkBERgpOtEEIkH0rhYaQQGR0mlWdAjO/Mn/Sees7jTqjdvzavOqiKMMDsAhqAEHXIAmuAEt0AYIPIJn8ArejCfjxXg3PmalJaPo2Qd/YHz9ABy4oY4=</latexit>

→W (l,h)W (l,h)→

Classic Attention Head

Softmax
<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="7m0j4W9HXg8iPuoi0+89+13Q08Q=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohvBTQX7gDaGyWTSDp1MwsxEKCFu/BU3LhRx61+482+ctFlo9cAwh3Pu5d57vJhRqSzryygtLC4tr5RXK2vrG5tb5vZOR0aJwKSNIxaJnockYZSTtqKKkV4sCAo9Rrre+DL3u/dESBrxWzWJiROiIacBxUhpyTX3Bl7EfDkJ9Zd2M/f6Lq2x49FR5ppVq25NAf8SuyBVUKDlmp8DP8JJSLjCDEnZt61YOSkSimJGssogkSRGeIyGpK8pRyGRTjq9IIOHWvFhEAn9uIJT9WdHikKZL6krQ6RGct7Lxf+8fqKCcyelPE4U4Xg2KEgYVBHM44A+FQQrNtEEYUH1rhCPkEBY6dAqOgR7/uS/pHNStxv1xs1ptXlRxFEG++AA1IANzkATXIEWaAMMHsATeAGvxqPxbLwZ77PSklH07IJfMD6+AWDkltk=</latexit>

W (l,h)
K

<latexit sha1_base64="bVoAr23Ko1Wd0fD3rTOtxJ5IV4Y=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIFaQkItVl0Y3LCvYBbQyTyaQdOpkJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jx5RIZdvfRmlpeWV1rbxe2djc2t4xd/c6kicC4TbilIueDyWmhOG2IoriXiwwjHyKu/74Ove7D1hIwtmdmsTYjeCQkZAgqLTkmQcDn9NATiL9pd3M69ynNXo6Osk8s2rX7SmsReIUpAoKtDzzaxBwlESYKUShlH3HjpWbQqEIojirDBKJY4jGcIj7mjIYYemm0wsy61grgRVyoR9T1lT93ZHCSOZL6soIqpGc93LxP6+fqPDSTQmLE4UZmg0KE2opbuVxWAERGCk60QQiQfSuFhpBAZHSoVV0CM78yYukc1Z3GvXG7Xm1eVXEUQaH4AjUgAMuQBPcgBZoAwQewTN4BW/Gk/FivBsfs9KSUfTsgz8wPn8AceiW5A==</latexit>

W (l,h)
V

<latexit sha1_base64="0n6XN5lzE6rQlfEOwvxQtozMXxI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohuXLdgHtDFMJpN26CQTZiZCCXHjr7hxoYhb/8Kdf+OkzUKrB4Y5nHMv997jxYxKZVlfRmlpeWV1rbxe2djc2t4xd/e6kicCkw7mjIu+hyRhNCIdRRUj/VgQFHqM9LzJde737omQlEe3ahoTJ0SjiAYUI6Ul1zwYepz5chrqL+1lbvsurbHT8UnmmlWrbs0A/xK7IFVQoOWan0Of4yQkkcIMSTmwrVg5KRKKYkayyjCRJEZ4gkZkoGmEQiKddHZBBo+14sOAC/0iBWfqz44UhTJfUleGSI3lopeL/3mDRAWXTkqjOFEkwvNBQcKg4jCPA/pUEKzYVBOEBdW7QjxGAmGlQ6voEOzFk/+S7lndbtQb7fNq86qIowwOwRGoARtcgCa4AS3QARg8gCfwAl6NR+PZeDPe56Ulo+jZB79gfHwDaiyW3w==</latexit>

W (l,h)
Q

<latexit sha1_base64="uxnpXF644bAXPOdKOlWMcuifHcQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrP7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBA16WGw==</latexit>

W (l,h)

Sinkformers: Transformers with doubly stochastic attention. AISTATS, 2022.
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Sinkformer: From Imitation to Improvement
▶ Notably, apply doubly-stochastic attention map is reasonable — the classic

Transformer tends to learn doubly-stochastic attention map during training.
▶ Sinkformer makes the tendency become a strict constraint.

Sinkformers: Transformers with doubly stochastic attention. AISTATS, 2022.
83 / 146



WGFormer: Extend and Improve Sinkformer to SE(3)-Transformer

Sinkhorn-based Attention Head

Sinkhorn

<latexit sha1_base64="PFhhfJBcWn+Z7evAbgOKBiyLcso=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKmhJRKrLohuXVewD2lgmk0k7dJIJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jRoxKZVnfRmFhcWl5pbhaWlvf2Nwyt3dakscCkybmjIuOiyRhNCRNRRUjnUgQFLiMtN3RVea3H4iQlId3ahwRJ0CDkPoUI6WlvrnXcznz5DjQX3Kb3icVdmIfD4/Svlm2qtYEcJ7YOSmDHI2++dXzOI4DEirMkJRd24qUkyChKGYkLfViSSKER2hAupqGKCDSSSYXpPBQKx70udAvVHCi/u5IUCCzJXVlgNRQznqZ+J/XjZV/4SQ0jGJFQjwd5McMKg6zOKBHBcGKjTVBWFC9K8RDJBBWOrSSDsGePXmetE6rdq1auzkr1y/zOIpgHxyACrDBOaiDa9AATYDBI3gGr+DNeDJejHfjY1paMPKeXfAHxucP5KqWiA==</latexit>

R(l→1,h)

<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)

<latexit sha1_base64="FX7RNudIjn7t2TIT8yuG1KPO46g=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrEPaNeSzaZtaDZZkqxQ1j34V7x4UMSrf8Ob/8ZsuwetDoQMM99HJuNHjCrtOF9WYWFxaXmluFpaW9/Y3LK3d1pKxBKTJhZMyI6PFGGUk6ammpFOJAkKfUba/vgy89v3RCoq+K2eRMQL0ZDTAcVIG6lv7/V8wQI1Cc2V3KR3SYUdj47Svl12qs4U8C9xc1IGORp9+7MXCByHhGvMkFJd14m0lyCpKWYkLfViRSKEx2hIuoZyFBLlJdP8KTw0SgAHQprDNZyqPzcSFKosopkMkR6peS8T//O6sR6cewnlUawJx7OHBjGDWsCsDBhQSbBmE0MQltRkhXiEJMLaVFYyJbjzX/5LWidVt1atXZ+W6xd5HUWwDw5ABbjgDNTBFWiAJsDgATyBF/BqPVrP1pv1PhstWPnOLvgF6+Mb+46WFg==</latexit>

R(l,h)

<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="UKULGfKMxs1mKYqMGtV7puMnU3g=">AAACHnicbVDLSsNAFJ3UV62vqEs3wSK0C0siWl0W3bisYB/QxDKZTNuhk5kwMxFKyJe48VfcuFBEcKV/46TNQtseGOZwzr3ce48fUSKVbf8YhZXVtfWN4mZpa3tnd8/cP2hLHguEW4hTLro+lJgShluKKIq7kcAw9Cnu+OObzO88YiEJZ/dqEmEvhENGBgRBpaW+eXFacX1OAzkJ9Zd00oekQqvpEs1VPEqrmo6qad8s2zV7CmuRODkpgxzNvvnlBhzFIWYKUShlz7Ej5SVQKIIoTktuLHEE0RgOcU9TBkMsvWR6XmqdaCWwBlzox5Q1Vf92JDCU2a66MoRqJOe9TFzm9WI1uPISwqJYYYZmgwYxtRS3sqysgAiMFJ1oApEgelcLjaCASOlESzoEZ/7kRdI+qzn1Wv3uvNy4zuMogiNwDCrAAZegAW5BE7QAAk/gBbyBd+PZeDU+jM9ZacHIew7BPxjfv9Qsou4=</latexit>

→(W (l)W (l)→)(h)

Classic SE(3) Attention Head

Softmax

<latexit sha1_base64="PFhhfJBcWn+Z7evAbgOKBiyLcso=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKmhJRKrLohuXVewD2lgmk0k7dJIJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jRoxKZVnfRmFhcWl5pbhaWlvf2Nwyt3dakscCkybmjIuOiyRhNCRNRRUjnUgQFLiMtN3RVea3H4iQlId3ahwRJ0CDkPoUI6WlvrnXcznz5DjQX3Kb3icVdmIfD4/Svlm2qtYEcJ7YOSmDHI2++dXzOI4DEirMkJRd24qUkyChKGYkLfViSSKER2hAupqGKCDSSSYXpPBQKx70udAvVHCi/u5IUCCzJXVlgNRQznqZ+J/XjZV/4SQ0jGJFQjwd5McMKg6zOKBHBcGKjTVBWFC9K8RDJBBWOrSSDsGePXmetE6rdq1auzkr1y/zOIpgHxyACrDBOaiDa9AATYDBI3gGr+DNeDJejHfjY1paMPKeXfAHxucP5KqWiA==</latexit>

R(l→1,h)

<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)

<latexit sha1_base64="FX7RNudIjn7t2TIT8yuG1KPO46g=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrEPaNeSzaZtaDZZkqxQ1j34V7x4UMSrf8Ob/8ZsuwetDoQMM99HJuNHjCrtOF9WYWFxaXmluFpaW9/Y3LK3d1pKxBKTJhZMyI6PFGGUk6ammpFOJAkKfUba/vgy89v3RCoq+K2eRMQL0ZDTAcVIG6lv7/V8wQI1Cc2V3KR3SYUdj47Svl12qs4U8C9xc1IGORp9+7MXCByHhGvMkFJd14m0lyCpKWYkLfViRSKEx2hIuoZyFBLlJdP8KTw0SgAHQprDNZyqPzcSFKosopkMkR6peS8T//O6sR6cewnlUawJx7OHBjGDWsCsDBhQSbBmE0MQltRkhXiEJMLaVFYyJbjzX/5LWidVt1atXZ+W6xd5HUWwDw5ABbjgDNTBFWiAJsDgATyBF/BqPVrP1pv1PhstWPnOLvgF6+Mb+46WFg==</latexit>

R(l,h)

<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="7m0j4W9HXg8iPuoi0+89+13Q08Q=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohvBTQX7gDaGyWTSDp1MwsxEKCFu/BU3LhRx61+482+ctFlo9cAwh3Pu5d57vJhRqSzryygtLC4tr5RXK2vrG5tb5vZOR0aJwKSNIxaJnockYZSTtqKKkV4sCAo9Rrre+DL3u/dESBrxWzWJiROiIacBxUhpyTX3Bl7EfDkJ9Zd2M/f6Lq2x49FR5ppVq25NAf8SuyBVUKDlmp8DP8JJSLjCDEnZt61YOSkSimJGssogkSRGeIyGpK8pRyGRTjq9IIOHWvFhEAn9uIJT9WdHikKZL6krQ6RGct7Lxf+8fqKCcyelPE4U4Xg2KEgYVBHM44A+FQQrNtEEYUH1rhCPkEBY6dAqOgR7/uS/pHNStxv1xs1ptXlRxFEG++AA1IANzkATXIEWaAMMHsATeAGvxqPxbLwZ77PSklH07IJfMD6+AWDkltk=</latexit>

W (l,h)
K

<latexit sha1_base64="bVoAr23Ko1Wd0fD3rTOtxJ5IV4Y=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIFaQkItVl0Y3LCvYBbQyTyaQdOpkJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jx5RIZdvfRmlpeWV1rbxe2djc2t4xd/c6kicC4TbilIueDyWmhOG2IoriXiwwjHyKu/74Ove7D1hIwtmdmsTYjeCQkZAgqLTkmQcDn9NATiL9pd3M69ynNXo6Osk8s2rX7SmsReIUpAoKtDzzaxBwlESYKUShlH3HjpWbQqEIojirDBKJY4jGcIj7mjIYYemm0wsy61grgRVyoR9T1lT93ZHCSOZL6soIqpGc93LxP6+fqPDSTQmLE4UZmg0KE2opbuVxWAERGCk60QQiQfSuFhpBAZHSoVV0CM78yYukc1Z3GvXG7Xm1eVXEUQaH4AjUgAMuQBPcgBZoAwQewTN4BW/Gk/FivBsfs9KSUfTsgz8wPn8AceiW5A==</latexit>

W (l,h)
V

<latexit sha1_base64="0n6XN5lzE6rQlfEOwvxQtozMXxI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohuXLdgHtDFMJpN26CQTZiZCCXHjr7hxoYhb/8Kdf+OkzUKrB4Y5nHMv997jxYxKZVlfRmlpeWV1rbxe2djc2t4xd/e6kicCkw7mjIu+hyRhNCIdRRUj/VgQFHqM9LzJde737omQlEe3ahoTJ0SjiAYUI6Ul1zwYepz5chrqL+1lbvsurbHT8UnmmlWrbs0A/xK7IFVQoOWan0Of4yQkkcIMSTmwrVg5KRKKYkayyjCRJEZ4gkZkoGmEQiKddHZBBo+14sOAC/0iBWfqz44UhTJfUleGSI3lopeL/3mDRAWXTkqjOFEkwvNBQcKg4jCPA/pUEKzYVBOEBdW7QjxGAmGlQ6voEOzFk/+S7lndbtQb7fNq86qIowwOwRGoARtcgCa4AS3QARg8gCfwAl6NR+PZeDPe56Ulo+jZB79gfHwDaiyW3w==</latexit>

W (l,h)
Q

<latexit sha1_base64="uxnpXF644bAXPOdKOlWMcuifHcQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrP7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBA16WGw==</latexit>

W (l,h)

1) New “QKV” matrices:
Q(l,h) = K(l,h) = X(l−1)W (l,h), V (l,h) = −X(l−1)(W (l)W (l)>)(h). (69)

2) Sinkhorn-based attention map: κ∞(R) := Nc ◦Nr · · ·Nc ◦Nr(exp(R)),

R(l,h) = R(l−1,h) + Q(l,h)(K(l,h))⊤√
Da

, T (l,h) = κ∞(R(l,h))V (l,h). (70)

3) Concatenation:
X(l) = X(l−1) + Concat({T (l,h)}Hh=1), R(l) = Concat({R(l,h)}Hh=1). (71)
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WGFormer: Extend and Improve Sinkformer to SE(3)-Transformer

Sinkhorn-based Attention Head

Sinkhorn

<latexit sha1_base64="PFhhfJBcWn+Z7evAbgOKBiyLcso=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKmhJRKrLohuXVewD2lgmk0k7dJIJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jRoxKZVnfRmFhcWl5pbhaWlvf2Nwyt3dakscCkybmjIuOiyRhNCRNRRUjnUgQFLiMtN3RVea3H4iQlId3ahwRJ0CDkPoUI6WlvrnXcznz5DjQX3Kb3icVdmIfD4/Svlm2qtYEcJ7YOSmDHI2++dXzOI4DEirMkJRd24qUkyChKGYkLfViSSKER2hAupqGKCDSSSYXpPBQKx70udAvVHCi/u5IUCCzJXVlgNRQznqZ+J/XjZV/4SQ0jGJFQjwd5McMKg6zOKBHBcGKjTVBWFC9K8RDJBBWOrSSDsGePXmetE6rdq1auzkr1y/zOIpgHxyACrDBOaiDa9AATYDBI3gGr+DNeDJejHfjY1paMPKeXfAHxucP5KqWiA==</latexit>

R(l→1,h)

<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)

<latexit sha1_base64="FX7RNudIjn7t2TIT8yuG1KPO46g=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrEPaNeSzaZtaDZZkqxQ1j34V7x4UMSrf8Ob/8ZsuwetDoQMM99HJuNHjCrtOF9WYWFxaXmluFpaW9/Y3LK3d1pKxBKTJhZMyI6PFGGUk6ammpFOJAkKfUba/vgy89v3RCoq+K2eRMQL0ZDTAcVIG6lv7/V8wQI1Cc2V3KR3SYUdj47Svl12qs4U8C9xc1IGORp9+7MXCByHhGvMkFJd14m0lyCpKWYkLfViRSKEx2hIuoZyFBLlJdP8KTw0SgAHQprDNZyqPzcSFKosopkMkR6peS8T//O6sR6cewnlUawJx7OHBjGDWsCsDBhQSbBmE0MQltRkhXiEJMLaVFYyJbjzX/5LWidVt1atXZ+W6xd5HUWwDw5ABbjgDNTBFWiAJsDgATyBF/BqPVrP1pv1PhstWPnOLvgF6+Mb+46WFg==</latexit>

R(l,h)

<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="UKULGfKMxs1mKYqMGtV7puMnU3g=">AAACHnicbVDLSsNAFJ3UV62vqEs3wSK0C0siWl0W3bisYB/QxDKZTNuhk5kwMxFKyJe48VfcuFBEcKV/46TNQtseGOZwzr3ce48fUSKVbf8YhZXVtfWN4mZpa3tnd8/cP2hLHguEW4hTLro+lJgShluKKIq7kcAw9Cnu+OObzO88YiEJZ/dqEmEvhENGBgRBpaW+eXFacX1OAzkJ9Zd00oekQqvpEs1VPEqrmo6qad8s2zV7CmuRODkpgxzNvvnlBhzFIWYKUShlz7Ej5SVQKIIoTktuLHEE0RgOcU9TBkMsvWR6XmqdaCWwBlzox5Q1Vf92JDCU2a66MoRqJOe9TFzm9WI1uPISwqJYYYZmgwYxtRS3sqysgAiMFJ1oApEgelcLjaCASOlESzoEZ/7kRdI+qzn1Wv3uvNy4zuMogiNwDCrAAZegAW5BE7QAAk/gBbyBd+PZeDU+jM9ZacHIew7BPxjfv9Qsou4=</latexit>

→(W (l)W (l)→)(h)

Classic SE(3) Attention Head

Softmax

<latexit sha1_base64="PFhhfJBcWn+Z7evAbgOKBiyLcso=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKmhJRKrLohuXVewD2lgmk0k7dJIJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jRoxKZVnfRmFhcWl5pbhaWlvf2Nwyt3dakscCkybmjIuOiyRhNCRNRRUjnUgQFLiMtN3RVea3H4iQlId3ahwRJ0CDkPoUI6WlvrnXcznz5DjQX3Kb3icVdmIfD4/Svlm2qtYEcJ7YOSmDHI2++dXzOI4DEirMkJRd24qUkyChKGYkLfViSSKER2hAupqGKCDSSSYXpPBQKx70udAvVHCi/u5IUCCzJXVlgNRQznqZ+J/XjZV/4SQ0jGJFQjwd5McMKg6zOKBHBcGKjTVBWFC9K8RDJBBWOrSSDsGePXmetE6rdq1auzkr1y/zOIpgHxyACrDBOaiDa9AATYDBI3gGr+DNeDJejHfjY1paMPKeXfAHxucP5KqWiA==</latexit>

R(l→1,h)

<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)

<latexit sha1_base64="FX7RNudIjn7t2TIT8yuG1KPO46g=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrEPaNeSzaZtaDZZkqxQ1j34V7x4UMSrf8Ob/8ZsuwetDoQMM99HJuNHjCrtOF9WYWFxaXmluFpaW9/Y3LK3d1pKxBKTJhZMyI6PFGGUk6ammpFOJAkKfUba/vgy89v3RCoq+K2eRMQL0ZDTAcVIG6lv7/V8wQI1Cc2V3KR3SYUdj47Svl12qs4U8C9xc1IGORp9+7MXCByHhGvMkFJd14m0lyCpKWYkLfViRSKEx2hIuoZyFBLlJdP8KTw0SgAHQprDNZyqPzcSFKosopkMkR6peS8T//O6sR6cewnlUawJx7OHBjGDWsCsDBhQSbBmE0MQltRkhXiEJMLaVFYyJbjzX/5LWidVt1atXZ+W6xd5HUWwDw5ABbjgDNTBFWiAJsDgATyBF/BqPVrP1pv1PhstWPnOLvgF6+Mb+46WFg==</latexit>

R(l,h)

<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="7m0j4W9HXg8iPuoi0+89+13Q08Q=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohvBTQX7gDaGyWTSDp1MwsxEKCFu/BU3LhRx61+482+ctFlo9cAwh3Pu5d57vJhRqSzryygtLC4tr5RXK2vrG5tb5vZOR0aJwKSNIxaJnockYZSTtqKKkV4sCAo9Rrre+DL3u/dESBrxWzWJiROiIacBxUhpyTX3Bl7EfDkJ9Zd2M/f6Lq2x49FR5ppVq25NAf8SuyBVUKDlmp8DP8JJSLjCDEnZt61YOSkSimJGssogkSRGeIyGpK8pRyGRTjq9IIOHWvFhEAn9uIJT9WdHikKZL6krQ6RGct7Lxf+8fqKCcyelPE4U4Xg2KEgYVBHM44A+FQQrNtEEYUH1rhCPkEBY6dAqOgR7/uS/pHNStxv1xs1ptXlRxFEG++AA1IANzkATXIEWaAMMHsATeAGvxqPxbLwZ77PSklH07IJfMD6+AWDkltk=</latexit>

W (l,h)
K

<latexit sha1_base64="bVoAr23Ko1Wd0fD3rTOtxJ5IV4Y=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIFaQkItVl0Y3LCvYBbQyTyaQdOpkJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jx5RIZdvfRmlpeWV1rbxe2djc2t4xd/c6kicC4TbilIueDyWmhOG2IoriXiwwjHyKu/74Ove7D1hIwtmdmsTYjeCQkZAgqLTkmQcDn9NATiL9pd3M69ynNXo6Osk8s2rX7SmsReIUpAoKtDzzaxBwlESYKUShlH3HjpWbQqEIojirDBKJY4jGcIj7mjIYYemm0wsy61grgRVyoR9T1lT93ZHCSOZL6soIqpGc93LxP6+fqPDSTQmLE4UZmg0KE2opbuVxWAERGCk60QQiQfSuFhpBAZHSoVV0CM78yYukc1Z3GvXG7Xm1eVXEUQaH4AjUgAMuQBPcgBZoAwQewTN4BW/Gk/FivBsfs9KSUfTsgz8wPn8AceiW5A==</latexit>

W (l,h)
V

<latexit sha1_base64="0n6XN5lzE6rQlfEOwvxQtozMXxI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohuXLdgHtDFMJpN26CQTZiZCCXHjr7hxoYhb/8Kdf+OkzUKrB4Y5nHMv997jxYxKZVlfRmlpeWV1rbxe2djc2t4xd/e6kicCkw7mjIu+hyRhNCIdRRUj/VgQFHqM9LzJde737omQlEe3ahoTJ0SjiAYUI6Ul1zwYepz5chrqL+1lbvsurbHT8UnmmlWrbs0A/xK7IFVQoOWan0Of4yQkkcIMSTmwrVg5KRKKYkayyjCRJEZ4gkZkoGmEQiKddHZBBo+14sOAC/0iBWfqz44UhTJfUleGSI3lopeL/3mDRAWXTkqjOFEkwvNBQcKg4jCPA/pUEKzYVBOEBdW7QjxGAmGlQ6voEOzFk/+S7lndbtQb7fNq86qIowwOwRGoARtcgCa4AS3QARg8gCfwAl6NR+PZeDPe56Ulo+jZB79gfHwDaiyW3w==</latexit>

W (l,h)
Q

<latexit sha1_base64="uxnpXF644bAXPOdKOlWMcuifHcQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrP7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBA16WGw==</latexit>

W (l,h)

1) New “QKV” matrices:
Q(l,h) = K(l,h) = X(l−1)W (l,h), V (l,h) = −X(l−1)(W (l)W (l)>)(h). (69)

2) Sinkhorn-based attention map: κ∞(R) := Nc ◦Nr · · ·Nc ◦Nr(exp(R)),

R(l,h) = R(l−1,h) + Q(l,h)(K(l,h))⊤√
Da

, T (l,h) = κ∞(R(l,h))V (l,h). (70)

3) Concatenation:
X(l) = X(l−1) + Concat({T (l,h)}Hh=1), R(l) = Concat({R(l,h)}Hh=1). (71)
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WGFormer: Extend and Improve Sinkformer to SE(3)-Transformer

Sinkhorn-based Attention Head

Sinkhorn

<latexit sha1_base64="PFhhfJBcWn+Z7evAbgOKBiyLcso=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKmhJRKrLohuXVewD2lgmk0k7dJIJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jRoxKZVnfRmFhcWl5pbhaWlvf2Nwyt3dakscCkybmjIuOiyRhNCRNRRUjnUgQFLiMtN3RVea3H4iQlId3ahwRJ0CDkPoUI6WlvrnXcznz5DjQX3Kb3icVdmIfD4/Svlm2qtYEcJ7YOSmDHI2++dXzOI4DEirMkJRd24qUkyChKGYkLfViSSKER2hAupqGKCDSSSYXpPBQKx70udAvVHCi/u5IUCCzJXVlgNRQznqZ+J/XjZV/4SQ0jGJFQjwd5McMKg6zOKBHBcGKjTVBWFC9K8RDJBBWOrSSDsGePXmetE6rdq1auzkr1y/zOIpgHxyACrDBOaiDa9AATYDBI3gGr+DNeDJejHfjY1paMPKeXfAHxucP5KqWiA==</latexit>

R(l→1,h)

<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)

<latexit sha1_base64="FX7RNudIjn7t2TIT8yuG1KPO46g=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrEPaNeSzaZtaDZZkqxQ1j34V7x4UMSrf8Ob/8ZsuwetDoQMM99HJuNHjCrtOF9WYWFxaXmluFpaW9/Y3LK3d1pKxBKTJhZMyI6PFGGUk6ammpFOJAkKfUba/vgy89v3RCoq+K2eRMQL0ZDTAcVIG6lv7/V8wQI1Cc2V3KR3SYUdj47Svl12qs4U8C9xc1IGORp9+7MXCByHhGvMkFJd14m0lyCpKWYkLfViRSKEx2hIuoZyFBLlJdP8KTw0SgAHQprDNZyqPzcSFKosopkMkR6peS8T//O6sR6cewnlUawJx7OHBjGDWsCsDBhQSbBmE0MQltRkhXiEJMLaVFYyJbjzX/5LWidVt1atXZ+W6xd5HUWwDw5ABbjgDNTBFWiAJsDgATyBF/BqPVrP1pv1PhstWPnOLvgF6+Mb+46WFg==</latexit>

R(l,h)

<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="UKULGfKMxs1mKYqMGtV7puMnU3g=">AAACHnicbVDLSsNAFJ3UV62vqEs3wSK0C0siWl0W3bisYB/QxDKZTNuhk5kwMxFKyJe48VfcuFBEcKV/46TNQtseGOZwzr3ce48fUSKVbf8YhZXVtfWN4mZpa3tnd8/cP2hLHguEW4hTLro+lJgShluKKIq7kcAw9Cnu+OObzO88YiEJZ/dqEmEvhENGBgRBpaW+eXFacX1OAzkJ9Zd00oekQqvpEs1VPEqrmo6qad8s2zV7CmuRODkpgxzNvvnlBhzFIWYKUShlz7Ej5SVQKIIoTktuLHEE0RgOcU9TBkMsvWR6XmqdaCWwBlzox5Q1Vf92JDCU2a66MoRqJOe9TFzm9WI1uPISwqJYYYZmgwYxtRS3sqysgAiMFJ1oApEgelcLjaCASOlESzoEZ/7kRdI+qzn1Wv3uvNy4zuMogiNwDCrAAZegAW5BE7QAAk/gBbyBd+PZeDU+jM9ZacHIew7BPxjfv9Qsou4=</latexit>

→(W (l)W (l)→)(h)

Classic SE(3) Attention Head

Softmax

<latexit sha1_base64="PFhhfJBcWn+Z7evAbgOKBiyLcso=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKmhJRKrLohuXVewD2lgmk0k7dJIJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jRoxKZVnfRmFhcWl5pbhaWlvf2Nwyt3dakscCkybmjIuOiyRhNCRNRRUjnUgQFLiMtN3RVea3H4iQlId3ahwRJ0CDkPoUI6WlvrnXcznz5DjQX3Kb3icVdmIfD4/Svlm2qtYEcJ7YOSmDHI2++dXzOI4DEirMkJRd24qUkyChKGYkLfViSSKER2hAupqGKCDSSSYXpPBQKx70udAvVHCi/u5IUCCzJXVlgNRQznqZ+J/XjZV/4SQ0jGJFQjwd5McMKg6zOKBHBcGKjTVBWFC9K8RDJBBWOrSSDsGePXmetE6rdq1auzkr1y/zOIpgHxyACrDBOaiDa9AATYDBI3gGr+DNeDJejHfjY1paMPKeXfAHxucP5KqWiA==</latexit>

R(l→1,h)

<latexit sha1_base64="m2ImV8IFwd5fa+gqUuCO6yo6PVs=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2AR6sGyK1I9Fr14rGAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ/aOhAyzHwfmYwfM6q043xbhaXlldW14nppY3Nre8fe3WspkUhMmlgwITs+UoRRTpqaakY6sSQo8hlp+6Pr3G8/EKmo4Hd6HBMvQgNOQ4qRNlLfPuj5ggVqHJkr7WT3aYWduidZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBspmV5g==</latexit>

X(l→1)

<latexit sha1_base64="ltM2OIZSGhCBoKxq0y3rXEaqNHk=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VugL2rVks9k2NJssSVYo6x78K148KOLVv+HNf2O27UGrAyHDzPeRyfgxo0o7zpdVWFpeWV0rrpc2Nre2d+zdvbYSicSkhQUTsusjRRjlpKWpZqQbS4Iin5GOP77O/c49kYoK3tSTmHgRGnIaUoy0kQb2Qd8XLFCTyFxpM7tLK+x0dJIN7LJTdaaAf4k7J2UwR2Ngf/YDgZOIcI0ZUqrnOrH2UiQ1xYxkpX6iSIzwGA1Jz1COIqK8dJo/g8dGCWAopDlcw6n6cyNFkcojmskI6ZFa9HLxP6+X6PDSSymPE004nj0UJgxqAfMyYEAlwZpNDEFYUpMV4hGSCGtTWcmU4C5++S9pn1XdWrV2e16uX83rKIJDcAQqwAUXoA5uQAO0AAYP4Am8gFfr0Xq23qz32WjBmu/sg1+wPr4B/qiWGA==</latexit>

T (l,h)

<latexit sha1_base64="FX7RNudIjn7t2TIT8yuG1KPO46g=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrEPaNeSzaZtaDZZkqxQ1j34V7x4UMSrf8Ob/8ZsuwetDoQMM99HJuNHjCrtOF9WYWFxaXmluFpaW9/Y3LK3d1pKxBKTJhZMyI6PFGGUk6ammpFOJAkKfUba/vgy89v3RCoq+K2eRMQL0ZDTAcVIG6lv7/V8wQI1Cc2V3KR3SYUdj47Svl12qs4U8C9xc1IGORp9+7MXCByHhGvMkFJd14m0lyCpKWYkLfViRSKEx2hIuoZyFBLlJdP8KTw0SgAHQprDNZyqPzcSFKosopkMkR6peS8T//O6sR6cewnlUawJx7OHBjGDWsCsDBhQSbBmE0MQltRkhXiEJMLaVFYyJbjzX/5LWidVt1atXZ+W6xd5HUWwDw5ABbjgDNTBFWiAJsDgATyBF/BqPVrP1pv1PhstWPnOLvgF6+Mb+46WFg==</latexit>

R(l,h)

<latexit sha1_base64="WYIKraSAXTKnfCT+nDtrYMCdlHQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrL7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBAdGWGg==</latexit>

V (l,h)

<latexit sha1_base64="iOGlDZErAsCibySaJw9kFEKqz3E=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei14ELxXsA9q1ZLNpG5pNliQrlHUP/hUvHhTx6t/w5r8x2+5BqwMhw8z3kcn4EaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WErHEpIkFE7LjI0UY5aSpqWakE0mCQp+Rtj++zPz2PZGKCn6rJxHxQjTkdEAx0kbq23s9X7BATUJzJdfpXVJhx6OjtG+XnaozBfxL3JyUQY5G3/7sBQLHIeEaM6RU13Ui7SVIaooZSUu9WJEI4TEakq6hHIVEeck0fwoPjRLAgZDmcA2n6s+NBIUqi2gmQ6RHat7LxP+8bqwH515CeRRrwvHsoUHMoBYwKwMGVBKs2cQQhCU1WSEeIYmwNpWVTAnu/Jf/ktZJ1a1Vazen5fpFXkcR7IMDUAEuOAN1cAUaoAkweABP4AW8Wo/Ws/Vmvc9GC1a+swt+wfr4BvCzlg8=</latexit>

K(l,h)

<latexit sha1_base64="LSxPN2FuEzELMMyrHSmVIHmCvrA=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148tmAf0K4lm822odlkSbJCWffgX/HiQRGv/g1v/huzbQ9aHQgZZr6PTMaPGVXacb6swtLyyupacb20sbm1vWPv7rWVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PF17nfuiVRU8Fs9iYkXoSGnIcVIG2lgH/R9wQI1icyVNrO7tMJORyfZwC47VWcK+Je4c1IGczQG9mc/EDiJCNeYIaV6rhNrL0VSU8xIVuonisQIj9GQ9AzlKCLKS6f5M3hslACGQprDNZyqPzdSFKk8opmMkB6pRS8X//N6iQ4vvZTyONGE49lDYcKgFjAvAwZUEqzZxBCEJTVZIR4hibA2lZVMCe7il/+S9lnVrVVrzfNy/WpeRxEcgiNQAS64AHVwAxqgBTB4AE/gBbxaj9az9Wa9z0YL1nxnH/yC9fEN+gGWFQ==</latexit>

Q(l,h)

<latexit sha1_base64="7m0j4W9HXg8iPuoi0+89+13Q08Q=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohvBTQX7gDaGyWTSDp1MwsxEKCFu/BU3LhRx61+482+ctFlo9cAwh3Pu5d57vJhRqSzryygtLC4tr5RXK2vrG5tb5vZOR0aJwKSNIxaJnockYZSTtqKKkV4sCAo9Rrre+DL3u/dESBrxWzWJiROiIacBxUhpyTX3Bl7EfDkJ9Zd2M/f6Lq2x49FR5ppVq25NAf8SuyBVUKDlmp8DP8JJSLjCDEnZt61YOSkSimJGssogkSRGeIyGpK8pRyGRTjq9IIOHWvFhEAn9uIJT9WdHikKZL6krQ6RGct7Lxf+8fqKCcyelPE4U4Xg2KEgYVBHM44A+FQQrNtEEYUH1rhCPkEBY6dAqOgR7/uS/pHNStxv1xs1ptXlRxFEG++AA1IANzkATXIEWaAMMHsATeAGvxqPxbLwZ77PSklH07IJfMD6+AWDkltk=</latexit>

W (l,h)
K

<latexit sha1_base64="bVoAr23Ko1Wd0fD3rTOtxJ5IV4Y=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIFaQkItVl0Y3LCvYBbQyTyaQdOpkJMxOhhLjxV9y4UMStf+HOv3HSZqGtB4Y5nHMv997jx5RIZdvfRmlpeWV1rbxe2djc2t4xd/c6kicC4TbilIueDyWmhOG2IoriXiwwjHyKu/74Ove7D1hIwtmdmsTYjeCQkZAgqLTkmQcDn9NATiL9pd3M69ynNXo6Osk8s2rX7SmsReIUpAoKtDzzaxBwlESYKUShlH3HjpWbQqEIojirDBKJY4jGcIj7mjIYYemm0wsy61grgRVyoR9T1lT93ZHCSOZL6soIqpGc93LxP6+fqPDSTQmLE4UZmg0KE2opbuVxWAERGCk60QQiQfSuFhpBAZHSoVV0CM78yYukc1Z3GvXG7Xm1eVXEUQaH4AjUgAMuQBPcgBZoAwQewTN4BW/Gk/FivBsfs9KSUfTsgz8wPn8AceiW5A==</latexit>

W (l,h)
V

<latexit sha1_base64="0n6XN5lzE6rQlfEOwvxQtozMXxI=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARKkhJRKrLohuXLdgHtDFMJpN26CQTZiZCCXHjr7hxoYhb/8Kdf+OkzUKrB4Y5nHMv997jxYxKZVlfRmlpeWV1rbxe2djc2t4xd/e6kicCkw7mjIu+hyRhNCIdRRUj/VgQFHqM9LzJde737omQlEe3ahoTJ0SjiAYUI6Ul1zwYepz5chrqL+1lbvsurbHT8UnmmlWrbs0A/xK7IFVQoOWan0Of4yQkkcIMSTmwrVg5KRKKYkayyjCRJEZ4gkZkoGmEQiKddHZBBo+14sOAC/0iBWfqz44UhTJfUleGSI3lopeL/3mDRAWXTkqjOFEkwvNBQcKg4jCPA/pUEKzYVBOEBdW7QjxGAmGlQ6voEOzFk/+S7lndbtQb7fNq86qIowwOwRGoARtcgCa4AS3QARg8gCfwAl6NR+PZeDPe56Ulo+jZB79gfHwDaiyW3w==</latexit>

W (l,h)
Q

<latexit sha1_base64="uxnpXF644bAXPOdKOlWMcuifHcQ=">AAAB/3icbVBLSwMxGMzWV62vVcGLl2ARKkjZFakei148VrAPaNeSzWbb0GyyJFmhrHvwr3jxoIhX/4Y3/43ZtgdtHQgZZr6PTMaPGVXacb6twtLyyupacb20sbm1vWPv7rWUSCQmTSyYkB0fKcIoJ01NNSOdWBIU+Yy0/dF17rcfiFRU8Ds9jokXoQGnIcVIG6lvH/R8wQI1jsyVtrP7tMJOhydZ3y47VWcCuEjcGSmDGRp9+6sXCJxEhGvMkFJd14m1lyKpKWYkK/USRWKER2hAuoZyFBHlpZP8GTw2SgBDIc3hGk7U3xspilQe0UxGSA/VvJeL/3ndRIeXXkp5nGjC8fShMGFQC5iXAQMqCdZsbAjCkpqsEA+RRFibykqmBHf+y4ukdVZ1a9Xa7Xm5fjWrowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+pqMFa7azD/7A+vwBA16WGw==</latexit>

W (l,h)

1) New “QKV” matrices:
Q(l,h) = K(l,h) = X(l−1)W (l,h), V (l,h) = −X(l−1)(W (l)W (l)>)(h). (69)

2) Sinkhorn-based attention map: κ∞(R) := Nc ◦Nr · · ·Nc ◦Nr(exp(R)),

R(l,h) = R(l−1,h) + Q(l,h)(K(l,h))⊤√
Da

, T (l,h) = κ∞(R(l,h))V (l,h). (70)

3) Concatenation:
X(l) = X(l−1) + Concat({T (l,h)}Hh=1), R(l) = Concat({R(l,h)}Hh=1). (71)
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The Motivations Behind The Key Improvements
1. Adjusting “QKV” matrices in a different manner:

▶ WQ = WK = W (l,h): Resulting in a valid kernel for interpreting attention maps.
▶ (W (l)W (l)⊤)(h) = (

∑H
h′=1 W

(l,h′)W (l,h′)⊤)(h) for the h-th head: Achieving
feature-level fusion across the attention heads

2. Removing FFN module:
▶ The new “QKV” matrices has fused features across different attention heads.
▶ Simplify the model architecture and reduce the computational cost

3. Sinkhorn-based attention maps:
▶ Achieving doubly-stochastic attention maps by few iterations
▶ Increasing computation costs slightly, but enhancing the model interpretability (As

shown in Sinkformer)

WGFormer: An SE (3)-Transformer Driven by Wasserstein Gradient Flows for Molecular Ground-State
Conformation Prediction. ICML, 2025.
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Rationality of Sinkformer and WGFormer
▶ Feedforward computation = Wasserstein gradient flow minimizing the

potential energy

Particle: xt+δt = xt + δt · v(xt, t), v(xt, t) =

∫
X
π∞(xt, y)(−WW>)yρ(y)dy.

The distribution of particle: ρt+δt = arg min
ρ∈P(X )

E(ρ) +
1

2δt
W2

2 (ρ, ρt).
(72)

▶ The exp(R) used in each layer of WGFormer can be treated as the prior of κ from
the previous layer.

▶ Given N particles (i.e., X = [x1, ...,xN ]>, ρ =
∑

n δxn),
E∞(ρ)⇔ max

P∈Π1

〈D, P 〉︸ ︷︷ ︸
expected distance

−〈P , logP 〉︸ ︷︷ ︸
entropy

, D = [‖Wxi −Wxj‖22 + rij ]. (73)

▶ Penalizing expected distance: The particles should not aggregate together
(avoid high potential energy).

▶ Regularizing entropy: The particles have dense interactions.
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Applications of WGFormer: Ground-State Conformation Prediction

3D Ground-State
Conformation

Initial RDKit 3D 
Conformation

Encoder D
ec

od
er

A Latent Mixture 
Model of Atoms 

W
G

Fo
rm

er

W
G

Fo
rm

er

W
G

Fo
rm

er

Minimization of 
Energy Function

Updated Mixture 
Model

For a molecule: initial coordinates {c̃i}Ni=1, distances {d̃ij}Ni,j=1, atom types {vi}Ni=1.
Encoder: Minimizing potential energy defined in the latent space

x
(0)
i = f(vi), r

(0)
ij = N (d̃ijuvivj + vvivj ;µ,σ), X(L),R(L) = WGFormerL(X(0),R(0)),

Decoder: Predicting the translation of each atom

ĉi = c̃i +
∑N

j=1

MLP(r(L)ij − r
(0)
ij )(c̃i − c̃j)

N
.

Supervised Learning of a model with 30-layer WGFormer.
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Applications of WGFormer: Ground-State Conformation Prediction

Dataset Method Model
Validation Test

D-MAE↓ D-RMSE↓ C-RMSD↓ D-MAE↓ D-RMSE↓ C-RMSD↓

Molecule3D
(random)

2D

GINE 0.590 1.014 1.116 0.592 1.018 1.116
GATv2 0.563 0.983 1.082 0.564 0.986 1.083
GPS 0.528 0.909 1.036 0.529 0.911 1.038

GTMGC 0.432 0.719 0.712 0.433 0.721 0.713

3D

SE(3)-Transformer 0.466 0.712 0.800 0.467 0.774 0.802
EGNN 0.461 0.704 0.798 0.462 0.766 0.799

ConfOpt-TwoAtom 0.438 0.668 0.748 0.438 0.670 0.749
ConfOpt-ThreeAtom 0.429 0.659 0.734 0.430 0.661 0.736

WGFormer (ours) 0.391 0.649 0.662 0.392 0.652 0.664

Molecule3D
(scaffold)

2D

GINE 0.883 1.517 1.407 1.400 2.224 1.960
GATv2 0.778 1.385 1.254 1.238 2.069 1.752
GPS 0.538 0.885 1.031 0.657 1.091 1.136

GTMGC 0.406 0.675 0.678 0.400 0.679 0.693

3D

SE(3)-Transformer 0.460 0.676 0.775 0.456 0.678 0.747
EGNN 0.448 0.666 0.758 0.442 0.670 0.741

ConfOpt-TwoAtom 0.408 0.626 0.708 0.402 0.628 0.698
ConfOpt-ThreeAtom 0.401 0.619 0.697 0.395 0.622 0.691

WGFormer (ours) 0.363 0.599 0.618 0.360 0.610 0.627
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Applications of WGFormer: Ground-State Conformation Prediction
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Applications of WGFormer: Ground-State Conformation Prediction

Molecule3D
(random)

Molecule3D
(scaffold)

QM9
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(s

/m
ol

)

0.89 0.86
0.79

0.38 0.35 0.34

1.43 1.42

0.57

0.18 0.17 0.15

GTMGC
ConfOpt-TwoAtom
ConfOpt-ThreeAtom
WGFormer (ours)

Both Sinkformer and WGFormer apply 3-5 Sinkhorn iterations per layer,
achieving high efficiency.
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Applications of WGFormer: Ground-State Conformation Prediction
Feedforward computation = Euler step of latent energy optimization

3D Ground-State
Conformation

Initial RDKit 3D 
Conformation

Encoder De
co

de
r

WGFormer

Decoder

WGFormer WGFormer

Decoder

WGFormer

Decoder

0 0.5 1.0
Time

0.30

0.40

D-
M

AE

WGFormer (L=10)

0 0.5 1.0
Time

0.50

0.60

D-
RM

SE

WGFormer (L=30)

0 0.5 1.0
Time

0.20

0.30

0.40

C-
RM

SD

SE(3)-Trans. (L=30)
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Applications of WGFormer: Ground-State Conformation Prediction
The proposed latent energy is highly correlated with physical energy

5 10 15 20 25 30
Layers

16
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Latent Energy
Potential Energy

5 10 15 20 25 30
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Latent Energy
Potential Energy

14620

14610

14600

14590

14580

14570

14560

Potential Energy (kcal/m
ol) 13950

13940

13930

13920

13910

13900 Potential Energy (kcal/m
ol)

# Layers 5 10 15 20 25 30 Pearson Correlation

Physical Energy (kcal/mol) -9.135 -18.199 -19.955 -34.814 -45.204 -52.378 0.885 ± 0.033Proposed Latent Energy -3.629 -7.729 -8.512 -8.932 -9.195 -10.385

GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical
method with multipole electrostatics and density-dependent dispersion contributions. JCTC, 2019.
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Applications of WGFormer: 3D Molecular Foundation Model

Replace the SE(3)-Transformer of Uni-Mol with WGFormer:

200K 400K 600K 800K 1M
Step

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 L
os

s

Uni-Mol
WGFormer
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Applications of WGFormer: 3D Molecular Foundation Model
Classification Tasks

ROC-AUC ↑

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93087

Uni-Mol (47.6M) 0.702 0.837 0.794 0.786 0.687 0.617 0.804 0.885 0.793
WGFormer (39.7M) 0.690 0.837 0.635 0.790 0.682 0.623 0.768 0.884 0.816

Regression Tasks

RMSE ↓ MAE ↓

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9
# Molecules 1128 642 4200 6830 21786 133885

Uni-Mol (47.6M) 0.884 1.756 0.598 57.00 0.015 0.005
WGFormer (39.7M) 0.836 1.588 0.584 58.70 0.016 0.005

The results are achieved under default hyperparameter settings of Uni-Mol.
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Applications of WGFormer: 3D Molecular Foundation Model
Classification Tasks

ROC-AUC ↑

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93087

Uni-Mol (47.6M) 0.702 0.837 0.794 0.786 0.687 0.617 0.804 0.885 0.793
WGFormer (39.7M) 0.690 0.837 0.928 0.790 0.682 0.623 0.768 0.884 0.816

Regression Tasks

RMSE ↓ MAE ↓

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9
# Molecules 1128 642 4200 6830 21786 133885

Uni-Mol (47.6M) 0.884 1.756 0.598 57.00 0.015 0.005
WGFormer (39.7M) 0.836 1.588 0.584 46.65 0.016 0.005

The results in red are achieved under non-default hyperparameter settings.
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From Euclidean Space to Graph: Two Technical Routes

1 Reuse the above auto-encoding architecture with WGFormer
▶ Take normalized adjacency/Laplacian matrix as initial R.
▶ Suitable for improving graph-oriented Transformers
▶ Suitable for geometric deep learning

▶ However, without any acceleration, the dense computation of WGFormer is
inapplicable for large-scale graphs, like social networks.

2 Consider the topological structure and the optimal transport on graph explicitly
and efficiently
▶ Connect OT to classic graph theory, rather than differential equations
▶ Suitable for improving GNNs
▶ Provide a new perspective to design GNNs and their learning paradigms.
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Optimal Transport on Graph

▶ Given two measures defined on a graph G(V, E)�i.e., ρ0 ∈ [0,∞)|V| and
ρ1 ∈ [0,∞)|V|, the 1-order Wasserstein distance between them is

W1(ρ0,ρ1) := min
P∈Π(ρ0,ρ1)

〈D, P 〉 = min
P∈Π(ρ0,ρ1)

∑
v,v′∈V×V

pvv′dvv′ , (74)

<latexit sha1_base64="q1HaZbYry+LxnhTjsJoSeYOQa28=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI7NDAyO7uZmSUhG77AiweN8eonefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXj+7nfmqDSPJKPZhqjH9Kh5APOqLFSfdIrltyyuwBZJ15GSpCh1it+dfsRS0KUhgmqdcdzY+OnVBnOBM4K3URjTNmYDrFjqaQhaj9dHDojF1bpk0GkbElDFurviZSGWk/DwHaG1Iz0qjcX//M6iRnc+imXcWJQsuWiQSKIicj8a9LnCpkRU0soU9zeStiIKsqMzaZgQ/BWX14nzauyVylX6tel6l0WRx7O4BwuwYMbqMID1KABDBCe4RXenCfnxXl3PpatOSebOYU/cD5/AObDjQU=</latexit>v
<latexit sha1_base64="Kyk6G5qwYnEqmznVt+Je6YATxUg=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjF6IrvGoEeiF49o5JHAhswOvTBhdnYzM0tCCH/gxYPGePWPvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0ODrvFktu2Z2DrBIvIyXIUOsWvzq9mKURSsME1brtuYnxJ1QZzgROC51UY0LZkPaxbamkEWp/Mr90Ss6s0iNhrGxJQ+bq74kJjbQeR4HtjKgZ6GVvJv7ntVMT3vgTLpPUoGSLRWEqiInJ7G3S4wqZEWNLKFPc3krYgCrKjA2nYEPwll9eJY3LslcpVx6uStXbLI48nMApXIAH11CFe6hBHRiE8Ayv8OYMnRfn3flYtOacbOYY/sD5/AFHSI02</latexit>

v→

Mass transport along the shortest path

▶ D = [dvv′ ], dvv′ is the shortest path from v to v′.
▶ P = [pvv′ ], pvv′ the mass transported from v to v′, along the shortest path.
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Optimal Transport on Graph
W1(ρ0,ρ1) can be equivalently computed by cost flow minimization:

W1(ρ0,ρ1) =min
f
‖diag(a)f‖1,

s.t. f ∈ Ω(SV ,ρ0,ρ1) = {f | SVf = ρ1 − ρ0}.
(75)

▶ SV = [sve] ∈ {0,±1}|V|×|E| is the
incidence matrix of G(V, E):

sve =


1 If v is the head of e
−1 If v is the tail of e
0 Otherwise

(76)

Mass transport flow on edges 

<latexit sha1_base64="x09EwRJzBSPajqlw07l2lQ9CIEo=">AAAB6nicdZDNSgMxFIXv1L9a/6ou3QSL4KpktI66K7pxWdHWQjuUTJppQzOZIckIZegjuHGhiFufyJ1vY9qOoKIHApfv3EvuPUEiuDYYfziFhcWl5ZXiamltfWNzq7y909Jxqihr0ljEqh0QzQSXrGm4EaydKEaiQLC7YHQ59e/umdI8lrdmnDA/IgPJQ06Jsegm7LFeuYKrJ9g9944RrmKrmody4iF3RjCuQK5Gr/ze7cc0jZg0VBCtOy5OjJ8RZTgVbFLqppolhI7IgHVsKUnEtJ/NVp2gA0v6KIyVfdKgGf0+kZFI63EU2M6ImKH+7U3hX14nNeGZn3GZpIZJOv8oTAUyMZrejfpcMWrE2BaEKm53RXRIFKHGplOyIXxdiv4vWkdV16t617VK/SKPowh7sA+H4MIp1OEKGtAECgN4gCd4doTz6Lw4r/PWgpPP7MIPOW+fmqeOCg==</latexit>

fe

▶ a ∈ R|E| contains nonzero elements of adjacency matrix A.
▶ f ∈ R|E| is the cost flow on graph edges, ensuring the transport from ρ0 to ρ1

(See the feasible domain).
▶ SVf captures the mass difference on graph nodes.
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Quasi-Wasserstein (QW) Distance for Measures on Graphs
▶ When only partial signals on VL are given, we have partial Wasserstein distance:

for ρ0,ρ1 ∈ R|VL|,

W(P )
1 (ρ0,ρ1) = minf∈Ω(SVL

,ρ0,ρ1) ‖diag(a)f‖1, (77)

▶ For partially-observed multi-dimensional signals, i.e.,
Y0 = [y

(c)
0,VL

],Y1 = [y
(c)
1,VL

] ∈ R|VL|×C , the QW distance between them is

QW (Y0,Y1) :=
∑C

c=1
W

(P )
1 (y

(c)
0,VL

,y
(c)
1,VL

)

=
∑C

c=1
min

f (c)∈Ω(SVL
, y

(c)
0,VL

,y
(c)
1,VL

)
‖diag(a)f (c)‖1

=minF∈Ω(SVL
, Y0,Y1) ‖diag(a)F ‖1,

(78)

▶ QW allows partial, unbalanced, and negative input signals.
▶ Given a specific graph G and VL, QW is a valid distance metric.
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=minF∈Ω(SVL
, Y0,Y1) ‖diag(a)F ‖1,

(78)

▶ QW allows partial, unbalanced, and negative input signals.
▶ Given a specific graph G and VL, QW is a valid distance metric.
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Learning GNNs via Minimizing QW Distance

▶ Given partially observed node labels
YVL

, we would like to predict them by
a GNN, i.e., ŶVL

:= gVL
(X,A; θ).

▶ We can learn the GNN via minimizing
the QW distance:

minθQW (gVL
(X,A; θ)︸ ︷︷ ︸
ŶVL

, YVL
), (79)

▶ Lead to an implicit
message-passing layer encoding
label transport.

GNN

Quasi-Wasserstein Loss
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Advantages over Traditional Losses (CE/MSE)
▶ Traditional Node-Level Learning Paradigm of GNN:

maxθ
∏

v∈VL

p(yv|X,A; θ)⇔ minθ
∑

v∈VL

ψ(gv(X,A; θ), yv). (80)

▶ p is Gaussian ⇔ ψ is MSE.
▶ p is Sigmoid/Softmax ⇔ ψ is Cross Entropy (CE) loss.

▶ What we really want to do is maximizing the joint probability of YVL
, i.e.,

maxθ p(YVL
|X,A; θ) (81)

▶ The above two equations are equivalent iff the labels are conditional
independent, which is questionable in practice.
p(yv|xv) 6= p(yv|xv,yv′),

p(yv,yv′ |xv,xv′) = p(yv|xv,xv′ ,yv′)p(yv′ |xv,xv′) 6= p(yv|xv,xv′)p(yv′ |xv,xv′),

p(YV |X,A) 6=
∏

v∈V
p(yv|X,A).
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Advantages over Traditional Losses (CE/MSE)

GNN

CE/MSE Loss

GNN

Quasi-Wasserstein Loss
▶ Relax the independency assumption, and lead to set-level prediction loss.
▶ In theory, the GNN minimizing QW loss fits labels better.

A Quasi-Wasserstein loss for learning graph neural networks. WWW, 2024.
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Solvers of QW Loss
▶ Learning GNN with the QW loss:

min
θ
QW (gVL

(X,A; θ),YVL
) = min

θ
min

F∈Ω(SVL
,gVL

(X,A;θ), YVL
)
‖diag(a)F ‖1. (82)

▶ Keypoint: Apply Bregman divergence Bϕ(x, y) = ϕ(x)− ϕ(y)− 〈∇ϕ(y), x− y〉.
▶ An inexact solver based on Bregman divergence-based relaxation:

minθ, F ‖diag(a)F ‖1 + λBϕ(gVL
(X,A; θ) + SVL

F , YVL
). (83)

▶ An exact solver based on Bregman ADMM: An augmented Lagrangian form
with a dual variable Z

minθ, F maxZ‖diag(a)F ‖1 + 〈Z, gVL
(X,A; θ) + SVL

F − YVL
〉

+ λBϕ(gVL
(X,A; θ) + SVL

F , YVL
).

(84)
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Compare with Traditional Learning Paradigm

Method Setting Node Classification Node Regression
Apply the ψ Cross-entropy or KL MSE

Traditional loss Predicted yv GNN: gv(X,A; θ), ∀v ∈ V \ VL

Apply the
ϕ Entropy 1

2‖ · ‖
2
2

QW loss
Bϕ(= ψ) KL MSE

Predicted yv gv(X,A; θ) + SvF
∗, ∀v ∈ V \ VL

▶ F ∗ captures the flow of labels.
▶ SvF

∗ works as a nonparametric flow module captures the residue of GNN’s
prediction.
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Amortized Flow: From Loss to Model

▶ We can parametrize the label
residue by a simple NN:

∆̂V = SV σ(EW )︸ ︷︷ ︸
Amortized Flow

. (85)

E ∈ RE×D is edge feature.
▶ As a result, the GNN becomes

ŶV = gV(X, A; θ) + ∆̂V . (86)
Incidence 

Matrix

Amortized 
Flow

GNN

Linear
+ ReLU

Edge
Features

Graph with 
Node Labels

Estimated 
Labels

Flow-based
Estimation

GNN-based
Estimation

▶ When E is meaningful edge feature, the AF introduces additional information
enhancing the GNN.

▶ When E is random noise, ∆̂V → 0, and GNN+AF degrades to classic GNN.
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Node Classification on Homophilic Graphs
Model #Param. Cora Citeseer Pubmed Computers Photo Improve
GCN 49,802 87.44±0.96 79.98±0.84 86.93±0.29 88.42±0.45 93.24±0.43 —

GCN+F 2,508,412 87.88±0.79 81.36±0.41 87.89±0.40 89.20±0.41 93.81±0.36 +0.83
GCN+AF 49,822 88.19±0.85 80.61±0.56 87.84±0.25 89.58±0.29 94.17 ±0.48 +0.88

GAT 399,390 89.20±0.79 80.75±0.78 87.42±0.33 90.08±0.36 94.38±0.25 —
GAT+F 2,858,000 89.11±0.66 80.19±0.64 88.38±0.23 90.41±0.28 94.65±0.24 +0.18

GAT+AF 399,410 89.44 ±0.69 81.39±0.94 88.25±0.22 90.62±0.35 94.67±0.30 +0.51
GIN 58,122 86.22±0.95 76.18±0.78 87.87±0.23 80.87±1.43 89.83±0.72 —

GIN+F 2,516,732 86.24±0.90 76.13±1.09 87.53±0.34 89.28±0.45 92.60±0.44 +2.16
GIN+AF 58,142 87.65±0.84 77.68±0.81 87.96±0.25 87.88±0.59 92.25±0.33 +2.49

GraphSAGE 99,530 88.24±0.95 79.81±0.80 88.14±0.25 89.71±0.38 95.08±0.26 —
GraphSAGE+F 2,558,140 87.59±0.77 80.52±0.68 88.61±0.32 90.17±0.24 95.25±0.25 +0.23

GraphSAGE+AF 99,550 88.34±0.74 80.71±0.70 88.78±0.16 90.60±0.45 95.49±0.34 +0.59
APPNP 49,802 88.33±0.77 81.28±0.71 88.62±0.33 86.27±0.37 93.70±0.27 —

APPNP+F 2,508,412 88.74±0.84 80.94±0.61 89.48±0.28 86.95±0.82 94.43±0.24 +0.47
APPNP+AF 49,822 89.38±0.77 82.09±0.74 89.70±0.32 87.55±0.59 94.50±0.43 +1.00

BernNet 49,833 88.28±1.00 79.81±0.79 88.87±0.38 87.61±0.46 93.68±0.28 —
BernNet+F 2,508,443 89.03±0.76 81.35±0.71 89.03±0.38 89.58±0.47 94.55±0.39 +1.06

BernNet+AF 49,853 88.60±0.71 81.27±0.70 89.37±0.47 87.53±0.45 93.80±0.41 +0.46
ChebNetII 49,813 88.26±0.89 80.00±0.74 88.57±0.36 86.58±0.71 93.50±0.34 —

ChebNetII+F 2,508,423 88.54±0.76 79.47±0.70 89.47±0.36 90.43±0.22 94.84±0.37 +1.17
ChebNetII+AF 49,833 88.64±0.81 79.99±0.64 89.34±0.40 90.46±0.39 94.75±0.43 +1.25
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Node Classification on Heterophilic Graphs
Model #Param. Squirrel Chameleon Actor Texas Cornell Arxiv-year Improve
GCN 134,085 46.55±1.15 63.57±1.16 34.00±1.28 77.21±3.28 61.91±5.11 44.40±0.16 —

GCN+F 1,125,850 52.62±0.49 68.10±1.01 38.09±0.50 84.10±2.95 84.26±2.98 44.70±0.30 +7.37
GCN+AF 134,095 53.40±1.35 68.25±1.01 38.77±0.70 89.51±1.64 87.02±2.98 44.72±0.36 +9.00

GAT 1,073,679 48.20±1.67 64.31±2.01 35.68±0.60 80.00±3.11 68.09±2.13 44.21±0.30 —
GAT+F 2,065,444 55.03±1.35 67.35±1.42 33.86±2.13 80.33±1.80 70.21±2.13 44.41±0.28 +1.78

GAT+AF 1,073,689 51.47±1.06 67.40±1.27 35.94±0.78 80.82±2.63 70.64±2.55 44.24±0.25 +1.67
GIN 142,405 39.11±2.23 64.29±1.51 32.37±1.56 72.79±4.92 62.55±4.80 44.39±0.28 —

GIN+F 1,134,170 65.29±0.68 73.26±1.12 32.32±1.93 77.54±2.60 64.04±3.62 44.56±0.26 +6.92
GIN+AF 142,415 50.76±1.17 71.25±1.45 34.43±1.03 78.69±3.11 67.87±5.96 44.51±0.30 +5.34

GraphSAGE 268,101 43.79±0.59 63.26±1.09 38.99±0.85 90.00±2.30 84.26±2.98 42.58±0.18 —
GraphSAGE+F 1,259,866 54.37±0.89 68.32±0.68 37.82±0.45 90.33±1.97 86.38±2.13 42.63±0.21 +2.82

GraphSAGE+AF 268,111 53.09±0.78 67.05±0.94 40.02±0.56 90.16±2.30 86.17±2.98 42.74±0.23 +2.72
APPNP 134,085 36.15±0.75 52.93±1.71 40.46±0.64 91.31±1.97 87.66±2.13 41.05±0.32 —

APPNP+F 1,125,850 38.73±1.06 53.76±1.25 40.78±0.74 91.48±2.30 87.87±2.34 40.98±0.28 +0.67
APPNP+AF 134,095 37.81±1.52 53.85±1.44 40.61±0.74 91.48±1.97 86.81±2.77 40.99±2.77 +0.33

BernNet 134,106 51.15±1.09 67.96±1.05 40.72±0.80 93.28±1.48 90.21±2.35 41.36±0.44 —
BernNet+F 1,125,871 55.22±0.64 71.66±1.18 40.91±0.71 93.44±1.80 90.85±2.34 41.34±0.37 +1.46

BernNet+AF 134,116 50.51±1.15 70.59±1.01 41.70±1.14 90.98±1.97 90.64±2.55 41.30±0.39 +0.17
ChebNetII 134,096 57.78±0.84 71.71±1.40 40.70±0.77 92.79±1.48 88.94±2.78 48.60±0.17 —

ChebNetII+F 1,125,861 60.55±0.64 74.05±0.68 41.37±0.67 93.93±0.98 87.23±3.62 48.82±0.19 +0.91
ChebNetII+AF 134,106 56.81±0.95 73.41±0.74 41.07±1.06 94.10±1.48 89.15±2.77 49.06±0.31 +0.51
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Summary

▶ Most advanced neural networks can be revisited and improved through the lens of
optimal transport

▶ Lead to interpretable and strong models for various applications
▶ Scalability and efficiency are main bottlenecks.

WGFormer [ICML’25]: https://arxiv.org/abs/2410.09795
▶ Code: https://github.com/SDS-Lab/WGFormer

QW Loss [WWW’24, 26]: https://arxiv.org/abs/2310.11762
▶ Code: https://github.com/SDS-Lab/QW_Loss

OT Pooling [TPAMI’23]:
https://ieeexplore.ieee.org/abstract/document/10247589/
▶ Code: https://github.com/SDS-Lab/ROT-Pooling
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Thanks!
5-min Break and QA
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Part 1 Computational Optimal Transport (Hongteng Xu)
▶ Preliminaries and basic concepts
▶ Typical computation methods

Part 2 Representation Learning Driven by OT (Dixin Luo)
▶ OT-based multi-modal learning
▶ Monge gap and its Gromovization for information bottleneck

Part 3 Neural Network Design Driven by OT (Minjie Cheng)
▶ OT-based Transformer
▶ OT-based graph neural network

Part 4 Recent Progress in Generative Modeling (Hongteng Xu)
▶ OT-based flow matching
▶ Applications of optimal acceleration transport
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Generative Modeling = Distribution Fitting and Matching
<latexit sha1_base64="BtvItvm3mt2L7QHMbQ7iJc57RLE=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0iqrfVW9OKxov2ANpTNdtsu3WzC7kYsoT/BiwdFvPqLvPlv3KYRVPTBwOO9GWbm+RFnSjvOh5VbWl5ZXcuvFzY2t7Z3irt7LRXGktAmCXkoOz5WlDNBm5ppTjuRpDjwOW37k8u5376jUrFQ3OppRL0AjwQbMoK1kW6i/n2/WHLsiuOeV0+QYzspUlJzyzXkZkoJMjT6xffeICRxQIUmHCvVdZ1IewmWmhFOZ4VerGiEyQSPaNdQgQOqvCQ9dYaOjDJAw1CaEhql6veJBAdKTQPfdAZYj9Vvby7+5XVjPax5CRNRrKkgi0XDmCMdovnfaMAkJZpPDcFEMnMrImMsMdEmnYIJ4etT9D9plW23aleuT0v1iyyOPBzAIRyDC2dQhytoQBMIjOABnuDZ4taj9WK9LlpzVjazDz9gvX0CrKmOFA==</latexit>px

<latexit sha1_base64="KF65uQNcH858yYG8vr6gHxGK+Hw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20oWy223bpZhN2J0IN/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omDjVjPsslrFuhdRwKRT3UaDkrURzGoWSN8PR7dRvPnJtRKwecJzwIKIDJfqCUbSSn3Szp0m3XHGr7gxkmXg5qUCOerf81enFLI24QiapMW3PTTDIqEbBJJ+UOqnhCWUjOuBtSxWNuAmy2bETcmKVHunH2pZCMlN/T2Q0MmYchbYzojg0i95U/M9rp9i/DjKhkhS5YvNF/VQSjMn0c9ITmjOUY0so08LeStiQasrQ5lOyIXiLLy+TxlnVu6xe3J9Xajd5HEU4gmM4BQ+uoAZ3UAcfGAh4hld4c5Tz4rw7H/PWgpPPHMIfOJ8/NkKO9w==</latexit>pz

<latexit sha1_base64="ndad8l2RPTIo2UrqU5XNbPN8Kms=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyyCqyFTnNouhKIblxXsA9phyKSZaWjmQZIR2qFf4saFIm79FHf+jelDUNEDl3s4515yc/yUM6kQ+jAKa+sbm1vF7dLO7t5+2Tw47MgkE4S2ScIT0fOxpJzFtK2Y4rSXCoojn9OuP76e+917KiRL4js1Sakb4TBmASNYackzy6mXh7PL0MsHlVnqTT2zgixUrTuoAZFV1a3qaOIgu1FrQNtCC1TACi3PfB8ME5JFNFaEYyn7NkqVm2OhGOF0VhpkkqaYjHFI+5rGOKLSzReHz+CpVoYwSISuWMGF+n0jx5GUk8jXkxFWI/nbm4t/ef1MBXU3Z3GaKRqT5UNBxqFK4DwFOGSCEsUnmmAimL4VkhEWmCidVUmH8PVT+D/pVC27Zjm355Xm1SqOIjgGJ+AM2OACNMENaIE2ICADD+AJPBtT49F4MV6XowVjtXMEfsB4+wRLapOJ</latexit>pg = g#pz

<latexit sha1_base64="lGeUwXO0ZAsyJbLMW0Kypi+o8KQ=">AAAB6HicdVDLSgMxFL1TX7W+qi7dBIvgasgUp7a7ohuXLdgHtEPJpJk2NvMgyQhl6Be4caGIWz/JnX9j+hBU9EDI4Zx7ufcePxFcaYw/rNza+sbmVn67sLO7t39QPDxqqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/uZ77nXsmFY+jWz1NmBeSUcQDTok2UnM0KJawjctVF9cQtsvmK7uGuNipVWrIsfECJVihMSi+94cxTUMWaSqIUj0HJ9rLiNScCjYr9FPFEkInZMR6hkYkZMrLFovO0JlRhiiIpXmRRgv1e0dGQqWmoW8qQ6LH6rc3F//yeqkOql7GoyTVLKLLQUEqkI7R/Go05JJRLaaGECq52RXRMZGEapNNwYTwdSn6n7TLtlOx3eZFqX61iiMPJ3AK5+DAJdThBhrQAgoMHuAJnq0769F6sV6XpTlr1XMMP2C9fQI+zo1C</latexit>g

▶ g : Z 7→ X is the generator/decoder.
▶ pz is the (predefined) latent distribution, and pg = g#pz is the model distribution.
▶ Learn g to fit data distribution px by pg.
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Outline

1. A Quick Review of Generative Modeling Based on Static OT
▶ Wasserstein GAN (WGAN)
▶ Wasserstein Autoencoder (WAE)
▶ Recent Variants

2. Recent Generative Modeling Methods Based on Dynamic OT
▶ OT-based conditional flow matching
▶ Improved flow matching based on Optimal Acceleration Transport (OAT)
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Classic OT-based Generative Modeling Paradigms

Solution 1: Minimize W1 approximately in its dual-form or its SW surrogates:
▶ WGAN: Wasserstein generative adversarial networks. ICML, 2017.
▶ WGAN-GP: Improved training of Wasserstein GANs. NeurIPS, 2017.
▶ Max-SWG: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.
▶ Amortized Max-SWG Amortized projection optimization for sliced Wasserstein generative models.

NeurIPS, 2022.

Solution 2: Minimize W2 approximately in its primal-form:
▶ WAE: Wasserstein Auto-Encoders. ICLR, 2018.
▶ SinkDiff: Learning generative models with Sinkhorn divergences. AISTATS, 2018.
▶ SWAE: Sliced Wasserstein auto-encoders. ICLR, 2018.
▶ RAE: Learning autoencoders with relational regularization. ICML, 2020.
▶ Conditional Transport: Exploiting Chain Rule and Bayes’ Theorem to Compare Probability Distributions.

NeurIPS, 2021.
▶ HCP-AE: Hilbert curve projection distance for distribution comparison. TPAMI, 2024.
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Solution 1: Minimize W1 approximately in its dual-form or its SW surrogates:
▶ WGAN: Wasserstein generative adversarial networks. ICML, 2017.
▶ WGAN-GP: Improved training of Wasserstein GANs. NeurIPS, 2017.
▶ Max-SWG: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.
▶ Amortized Max-SWG Amortized projection optimization for sliced Wasserstein generative models.

NeurIPS, 2022.

Solution 2: Minimize W2 approximately in its primal-form:
▶ WAE: Wasserstein Auto-Encoders. ICLR, 2018.
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Wasserstein Generative Adversarial Network (WGAN)
Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017]: Fit
the model distribution pg by minimizing its 1-Wasserstein distance to the data
distribution px in the dual-form:

W1(px, pg) = inf
π∈Π(px,pg)

E(x,g(z))∼π[‖x− g(z)‖1] = sup
f∈L1

Ex[f(x)]− Ez[f(g(z))] (87)

Therefore, we have

inf
g
W1(px, pg)⇐⇒ inf

g
sup
f∈L1

Ex[f(x)]− Ez[f(g(z))] (88)

Given a set of samples X = {xn}Nn=1 and a set of latent code Z = {zn}Nn=1, we have

min
g
max
f∈L1

∑
n

[f(xn)]−
∑
n

[f(g(zn))] (89)
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Wasserstein Autoencoder (WAE)

Besides approximate the primal form of Wp by EOT, another way is applying the
autoencoding architecture.

▶ Wasserstein autoencoder (WAE) fits the model distribution pg by minimizing
its W2 distance to the data distribution px approximately.

inf
g
W2(px, pg) ≈ inf

g,f
EpxEqz|x;f [dx(x, g(z))]︸ ︷︷ ︸

reconstruction loss

+ γdp(

qz;f︷ ︸︸ ︷
Epx [qz|x;f ], pz)︸ ︷︷ ︸

distance(posterior, prior)

, (90)

▶ qz|x;f is the posterior of z given x, parameterized by an encoder f : X 7→ Z.
▶ qz;f = Epx [qz|x;f ] is the expectation of the posterior distributions.
▶ pz is the prior of z.

Wasserstein Auto-Encoders. ICLR 2018.
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Comparisons with Other Autoencoders

Method f : X 7→ Z Prior pz Learn pz dp(qz;Q, pz)

VAE Probabilistic N (z; 0, I) No KL
GMVAE Probabilistic 1

K

∑
kN (z;uk,Σk) No KL

VampPrior Probabilistic 1
K

∑
kN (z;Q(xk)) Yes KL

WAE Deterministic N (z; 0, I) No MMD/GAN
SWAE Deterministic N (z; 0, I) No SW2

RAE Probabilistic/Deterministic 1
K

∑
kN (z;uk,Σk) Yes FGW2

HCP-AE Probabilistic/Deterministic N (z; 0, I) No HCP2
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A (Partial) Family Tree of OT-based Generative Models
 

Dual Form Primal Form SW-based 
Surrogate

SWAE

SWG

HCP Max-SWG

Amortized Max-SWG

WGAN

WGAN-GP
<latexit sha1_base64="dnQAQO57+YXbpD8R91OHJht1HPk="></latexit>

inf
g

sup
f2L1

Ex[f(x)]� Ez[f(g(z))]

+ �Ez[(krg(z)f(g(z))k � 1)2]

Conditional Transport

SinkDiff / OT-GAN 

RAE

Amortized 
OT Plan

Optimize
Linear Proj.

Amortized
Nonlinear Proj.

Add Gradient
Penalty

Min-Max Optimization
(Adversarial Learning)Min-Min Optimization
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inf
g,f

Ex[dX (x, g(f(x))]

+ �dP(qz, pz)
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The above methods are based on the static
definition of OT (i.e., Kantorovich-form OT).
The dynamic-form OT triggers more recent
generative modeling methods — flow matching.
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Flow Matching (FM) and Classical Two-Phase FM

Sample
Sample
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Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

Penalizing the upper bound of
Optimal Acceleration Transport
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t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.

▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with
an auxiliary variable z ∼ π:

minθ Ez, t, x[‖vθ(x, t)− vt(x|z)‖2], (91)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).
▶ FM (Lipman et al.):
pt(x|z) = N

(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1
▶ OT-CFM: Optimal Transport (OT)
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OAT-FM in the product space
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FM in the sample space

Penalizing the upper bound of
Optimal Acceleration Transport

<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.
▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:

minθ Ez, t, x[‖vθ(x, t)− vt(x|z)‖2], (91)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).

▶ FM (Lipman et al.):
pt(x|z) = N

(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1
▶ OT-CFM: Optimal Transport (OT)

perspective...
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Penalizing the upper bound of
Optimal Acceleration Transport

<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.
▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:

minθ Ez, t, x[‖vθ(x, t)− vt(x|z)‖2], (91)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).
▶ FM (Lipman et al.):
pt(x|z) = N

(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1
▶ OT-CFM: Optimal Transport (OT)

perspective...
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<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.
▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:

minθ Ez, t, x[‖vθ(x, t)− vt(x|z)‖2], (91)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).
▶ FM (Lipman et al.):
pt(x|z) = N

(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1

▶ OT-CFM: Optimal Transport (OT)
perspective...
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t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Flow Matching for Generative
Modeling. ICLR, 2023.
Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of
probability mass from a prior ρ0 to a data ρ1.
▶ Conditional FM (CFM): Set ρ0 = N (0, 1), with

an auxiliary variable z ∼ π:

minθ Ez, t, x[‖vθ(x, t)− vt(x|z)‖2], (91)

Generate new data by x̂1 = x0 +
∫ 1
0 vθ(xt, t)dt. In

practice, xt+∆t = xt +∆t · vθ(xt, t).
▶ FM (Lipman et al.):
pt(x|z) = N

(
tz, (tσ − t+ 1)2

)
, π = ρ1

▶ I-CFM: xt = (1− t) · x0 + t · x1, π = ρ0 × ρ1
▶ OT-CFM: Optimal Transport (OT)

perspective...
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Flow Matching (FM) and Classical Two-Phase FM

Sample
Sample

Ve
lo

cit
y

Ve
lo

cit
y

Sa
m

pl
e

Sa
m

pl
e

Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

Penalizing the upper bound of
Optimal Acceleration Transport

<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vθ(x, t) capturing the transport of probability
mass from a prior ρ0 to a data ρ1.

2) Classical Two-Phase FM (Sample Space): ReFlow,
Consistency Distillation
▶ Pros: Few sampling steps, competitive results, ...
▶ Cons: Require a large number of noise data pair, the

risk of distribution drift, ...

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow. ICLR, 2023.
Consistency Models. ICML, 2023.
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Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

Penalizing the upper bound of
Optimal Acceleration Transport

<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

3) OAT-FM (Sample × Velocity Space): A novel two-phase FM based on
Optimal Acceleration Transport (OAT)
▶ Given a pre-trained flow-based generator vθ

▶ Minimizes the acceleration transport between µ0 and µ1
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OAT-FM: A Novel Two-Phase FM
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Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

Penalizing the upper bound of
Optimal Acceleration Transport

<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0
<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1

<latexit sha1_base64="83SWqiO01K8LWZUnNBF0SQU8dTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9XXr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/VcY2F</latexit>

t = 1
<latexit sha1_base64="HAMaZ46LcMGvi6ycGteU0lbLr/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmtx+5NiJWDzhJuB/RoRKhYBStdI9Xbr9ccavuHOQv8XJSgRyNfvmzN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkxCoDEsbalkIyV39OZDQyZhIFtjOiODLL3kz8z+umGF76mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLf0nrrOrVqrW780r9Oo+jCEdwDKfgwQXU4RYa0AQGQ3iCF3h1pPPsvDnvi9aCk88cwi84H9/T7Y2E</latexit>

t = 0

<latexit sha1_base64="A4DSZB2DaSGMw2I1qyrlLYyDadg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Ct6eZ6KlhHLhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3EFkec=</latexit>x0 → ω0
<latexit sha1_base64="KechFacGtDrscBv+1Lxi+vD0wy4=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLks2zbahSXZNssWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDvz22OqNIvlg5kk1Bd4IFnECDZW8p8Cr6eZ6KlhHHhBueJW3TnQKvFyUoEcjaD81evHJBVUGsKx1l3PTYyfYWUY4XRa6qWaJpiM8IB2LZVYUO1n86On6MwqfRTFypY0aK7+nsiw0HoiQtspsBnqZW8m/ud1UxNd+xmTSWqoJItFUcqRidEsAdRnihLDJ5Zgopi9FZEhVpgYm1PJhuAtv7xKWhdVr1at3V9W6jd5HEU4gVM4Bw+uoA530IAmEHiEZ3iFN2fsvDjvzseiteDkM8fwB87nD3QXkek=</latexit>x1 → ω1

<latexit sha1_base64="N8+d1Qq7wEmAPvJ+pFcBDrt0fzw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0WoICURqR6LXjxWsB/QhrDZbtulm03YnVRL7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzglhwDY7zba2srq1vbOa28ts7u3v7duGgoaNEUVankYhUKyCaCS5ZHTgI1ooVI2EgWDMY3kz95ogpzSN5D+OYeSHpS97jlICRfLsw8tMODBiQSenRhzM49e2iU3ZmwMvEzUgRZaj59lenG9EkZBKoIFq3XScGLyUKOBVsku8kmsWEDkmftQ2VJGTaS2enT/CJUbq4FylTEvBM/T2RklDrcRiYzpDAQC96U/E/r51A78pLuYwTYJLOF/USgSHC0xxwlytGQYwNIVRxcyumA6IIBZNW3oTgLr68TBrnZbdSrtxdFKvXWRw5dISOUQm56BJV0S2qoTqi6AE9o1f0Zj1ZL9a79TFvXbGymUP0B9bnDwXhk9s=</latexit>

vω(xt, t)

<latexit sha1_base64="ySF0obUhuOFEB2y3c4lvfQKphCs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQcpEpLosunFZwT6gCWEynbZDZ5IwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3niDmTGmEvq3C2vrG5lZxu7Szu7d/YB8etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTjG9nfmdCpWJR+KDTmHoCD0M2YARrI/l2ufroo3M48dGZq5hwReIj366gGpoDrhInJxWQo+nbX24/IomgoSYcK9VzUKy9DEvNCKfTkpsoGmMyxkPaMzTEgiovmx8/hadG6cNBJE2FGs7V3xMZFkqlIjCdAuuRWvZm4n9eL9GDay9jYZxoGpLFokHCoY7gLAnYZ5ISzVNDMJHM3ArJCEtMtMmrZEJwll9eJe2LmlOv1e8vK42bPI4iOAYnoAoccAUa4A40QQsQkIJn8ArerCfrxXq3PhatBSufKYM/sD5/ALoQk48=</latexit>

(x0, v0) → µ0

<latexit sha1_base64="8bkGWj8lLimLrw57qVfga0NDWXU=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoiUl0W3bisYB/QhDCZTtuhM5MwMymGUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBmVGnH+bYKa+sbm1vF7dLO7t7+gX141FZRIjFp4YhFshsiRRgVpKWpZqQbS4J4yEgnHN/O/M6ESEUj8aDTmPgcDQUdUIy0kQK7XH0M3HM4CdwzT1Hu8SRwA7vi1Jw54Cpxc1IBOZqB/eX1I5xwIjRmSKme68Taz5DUFDMyLXmJIjHCYzQkPUMF4kT52fz4KTw1Sh8OImlKaDhXf09kiCuV8tB0cqRHatmbif95vUQPrv2MijjRRODFokHCoI7gLAnYp5JgzVJDEJbU3ArxCEmEtcmrZEJwl19eJe2Lmluv1e8vK42bPI4iOAYnoApccAUa4A40QQtgkIJn8ArerCfrxXq3PhatBSufKYM/sD5/AL61k5I=</latexit>

(x1, v1) → µ1
<latexit sha1_base64="h/vvydR+2muBBWZm87V52YWqDqU=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSGQQAgzItFj0IvHCGaBZBh6Oj1Jk56F7ppgGPIFXvwVLx4U8erZm39jZznExAcFj/eqqKrnxYIrsKwfI7OxubW9k93N7e0fHB6ZxydNFSWSsgaNRCTbHlFM8JA1gINg7VgyEniCtbzh7dRvjZhUPAofYBwzJyD9kPucEtCSaxaKIzftwoABmRQfXShDqYzJkljGUCq5Zt6qWDPgdWIvSB4tUHfN724voknAQqCCKNWxrRiclEjgVLBJrpsoFhM6JH3W0TQkAVNOOntnggta6WE/krpCwDN1eSIlgVLjwNOdAYGBWvWm4n9eJwH/2kl5GCfAQjpf5CcCQ4Sn2eAel4yCGGtCqOT6VkwHRBIKOsGcDsFefXmdNC8qdrVSvb/M124WcWTRGTpHRWSjK1RDd6iOGoiiJ/SC3tC78Wy8Gh/G57w1YyxmTtEfGF+/NdCa8Q==</latexit>

(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

3) OAT-FM (Sample × Velocity Space): A novel two-phase FM based on
Optimal Acceleration Transport (OAT)
▶ Given a pre-trained flow-based generator vθ
▶ Minimizes the acceleration transport between µ0 and µ1
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OAT-FM: A Novel Two-Phase FM
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(vω(xt, t), a(vω, t))

Obtaining an Initial 
Velocity Field

Theoretical Guarantee, Practical Computation, Efficient Training, Consistent Improvement

OAT-FM: Optimal Acceleration Transport for Improved Flow Matching. arXiv, 2025.
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The Motivations: Recall Dynamic Optimal Transport
Intuition: The ”Least Effort” Principle
▶ The Task: Moving a pile of sand (source ρ0) to a target shape (target ρ1).
▶ The Goal: Find the most efficient flow that minimizes the total energy spent.

Dynamic Formulation (Benamou-Brenier): The Wasserstein-2 distance finds the
path of Least Kinetic Energy:

W2
2 (ρ0, ρ1) = min

ρ, v

∫ 1

0

∫
X

1

2
ρ(x, t)‖v(x, t)‖22︸ ︷︷ ︸

Kinetic Energy Density

dxdt, (92)

subject to:
▶ ∂tρ+∇x · (vρ) = 0︸ ︷︷ ︸

Conservation of Mass

: No mass is created or destroyed.

▶ ρ(·, 0) = ρ0, ρ(·, 1) = ρ1: Start at noise, end at data.
A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische
Mathematik, 2000.
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The Motivations: Optimal Transport Perspective of FM
1. Conditional FM (CFM): Set ρ0 = N (0, 1), with an auxiliary variable z ∼ π:

minθ Ez∼π, t∼Unif[0,1], x∼pt(·|z)[‖vθ(x, t)− vt(x|z)‖
2], (93)

2. OT-CFM: implements CFM by setting the distribution π in (93) as the OT plan
corresponding to W2

2 (ρ0, ρ1) and xt = (1− t) · x0 + t · x1.

min
θ

Upper-level: LCFM︷ ︸︸ ︷
E(x0,x1)∼π∗, t∼Unif[0,1][‖vθ(xt, t)− (x1 − x0)‖2],

s.t. π∗ =

Lower-level: W2
2 (ρ0,ρ1)︷ ︸︸ ︷

argmin
π∈Π(ρ0,ρ1)

Eπ[‖x1 − x0‖22],

(94)

This is a Bi-level Optimization Problem.
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The Motivations: Optimal Transport Perspective of FM

(a) I-CFM, π = ρ0 × ρ1 (b) OT-CFM, π = π∗

The objective of OT-CFM regresses vθ(xt, t) to the constant velocity (x1 − x0).
However, constant velocity is sufficient but not necessary for straightening
flows.
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The Motivations: Optimal Transport Perspective of FM

Proposition 3 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the
acceleration is everywhere parallel to the velocity. The classical (first-order)
dynamical optimal transport is recovered as the special case with zero acceleration.

Can we leverage the advantages of OT by minimizing
acceleration instead of velocity?
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Optimal Acceleration Transport (OAT)
Optimal Acceleration Transport: Bridges µ0 and µ1 in the product space (X ×V) by
finding a path that minimizes total squared acceleration under second-order dynamics.

Definition 4 (Dynamic Formulation of Optimal Acceleration Transport 1)

Let X ⊂ Rd be the sample space and V ⊂ Rd the velocity space (by default V = Rd).
For µ0, µ1 ∈ P(X × V), the optimal acceleration transport between them is defined as

A2
2(µ0, µ1) := min

µ, a

∫ 1

0

∫
X×V

1

2
µ(x, v, t) ‖a(x, v, t)‖22 dxdv dt, (95)

subject to the Vlasov equation ∂tµ+ v · ∇xµ+∇v ·
(
aµ
)
= 0, with boundary

conditions µ(·, ·, 0) = µ0 and µ(·, ·, 1) = µ1. Here, a : X × V × [0, 1] 7→ Rd is the
acceleration field, and the Vlasov equation expresses conservation of mass in the
product space.
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Optimal Acceleration Transport (OAT)

Definition 5 (Kantorovich formulation of OAT 2,3,4)

Given z0 = (x0, v0) ∼ µ0 and z1 = (x1, v1) ∼ µ1, the OAT problem is equivalent to
solving an optimal coupling w.r.t. squared acceleration cost, i.e.,

A2
2(µ0, µ1)

= minπ∈Π(µ0,µ1) E(z0,z1)∼π[c
2
A(z0, z1)]

= minπ∈Π(µ0,µ1) E(z0,z1)∼π

[
12
∥∥∥x1 − x0

T
− v1 + v0

2

∥∥∥2︸ ︷︷ ︸
velocity alignment

+ ‖v1 − v0‖2︸ ︷︷ ︸
acceleration penalty

]
,

(96)

where T > 0 denotes the time horizon between µ0 and µ1, which is 1 in our case.
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Optimal Acceleration Transport (OAT)

Joint Matching: Couples samples in X × V , aligning both position and velocity.

Theorem 6 (Straightening Flow via OAT)

Given two boundary distributions µ0, µ1 ∈ P(X × V), OAT admits an optimal coupling
π∗ ∈ Π(µ0, µ1) for the static problem in (96). For every (x0, v0), (x1, v1) ∼ π∗, the
corresponding trajectory is straight iff v0 and v1 are collinear with x1 − x0. Otherwise,
it bends exactly to match the endpoints’ orthogonal components.
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OAT-FM: From Constant Velocity to Acceleration Control

Standard FM: Enforces vθ(x, t) ≈ constant velocity.

OAT-FM Motivation:
▶ Shift to acceleration minimization.
▶ Desideratum: For pre-trained vθ, refine using OAT for better performance.

Problem Setup:
▶ Trajectory endpoints: z0 = (x0, v0) and z1 = (x1, v1).
▶ Path xt: Linear interpolation xt = (1− t)x0 + tx1.
▶ Model state: zt(θ) = (xt, vθ(xt, t)).
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OAT-FM: The Objective Function

Cost Function ℓA:

ℓA(z0, z1, t; θ) = α
∥∥∥xt − x0

t
− v0 + vθ

2

∥∥∥2
2︸ ︷︷ ︸

Velocity Alignment (0→t)

+(1− α) ‖vθ − v0‖22︸ ︷︷ ︸
Accel. Penalty (0→t)

+ α
∥∥∥x1 − xt

1− t
− vθ + v1

2

∥∥∥2
2︸ ︷︷ ︸

Velocity Alignment (t→1)

+(1− α) ‖v1 − vθ‖22︸ ︷︷ ︸
Accel. Penalty (t→1)

(97)

Key Properties:
▶ Hyperparameter α balances alignment vs. acceleration.
▶ With α = 12

13 , recovers OAT cost structure: ℓA = 1
13(c

2
A(z0, zt) + c2A(zt, z1)).
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OAT-FM: The Objective Function

Cost Function ℓA:

ℓA(z0, z1, t; θ) = α
∥∥∥xt − x0

t
− v0 + vθ
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2︸ ︷︷ ︸

Velocity Alignment (0→t)
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OAT-FM: The Bi-level Optimization Problem
OAT-FM Objective: We fine-tune the flow model by solving the following Bi-level
Optimization Problem:

min
θ

Upper-level: LOAT(µ0,µ1;α)︷ ︸︸ ︷
E(z0,z1)∼π∗, t∼Unif[0,1][ℓA(z0, z1, t; θ)],

s.t. π∗ =

Lower-level: A2
2(µ0,µ1)︷ ︸︸ ︷

argmin
π∈Π(µ0,µ1)

E(z0,z1)∼π[c
2
A(z0, z1)] .

(98)

▶ Lower-level: Finds the optimal coupling π∗ that minimizes total acceleration in
the product space.

▶ Upper-level: Aligns the learned flow with the OAT geodesics via ℓA.
▶ Parameter α: Balances directional alignment and acceleration minimization.
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OAT-FM vs. OT-CFM
Component OT-CFM OAT-FM (Proposed)

Space Sample Space X Product Space X × V

Dynamics Continuity Equation Vlasov Equation

∂tρ+∇x · (vρ) = 0 ∂tµ+∇x · (vµ) +∇v · (aµ) = 0

Lower-level Optimal Transport (OT) Optimal Acceleration Transport (OAT)

(Coupling) π∗ = argminE[‖x1 − x0‖2] π∗ = argminE[c2A(z0, z1)]

Upper-level Velocity Matching Acceleration Matching Proxy

(Objective) min ‖vθ − (x1 − x0)‖2 min ℓA(z0, z1, t; θ)

Mechanism Constant Velocity Minimized Acceleration

(Straightening) min
∫ 1
0 ‖vt‖

2dt =⇒ ẍ = 0 min
∫ 1
0 ‖at‖

2dt =⇒ v̈ = 0
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2dt =⇒ ẍ = 0 min
∫ 1
0 ‖at‖

2dt =⇒ v̈ = 0

133 / 146



OAT Bound of OAT-FM

Theorem 7 (OAT Bound of OAT-FM)

The OAT-FM objective LOAT(µ0, µ1; α) is lower-bounded by a scaled version of the
true OAT second-order discrepancy, i.e.,

LOAT(µ0, µ1; α) ≥
2

27
A2

2(µ0, µ1), (99)

with α = 2/3, and the equality held if and only if v1 = v0 for π∗-almost every pair.
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Efficient Implementation via Decomposable Structure

The Challenge: Solving OAT requires coupling in a 4D product space:
π(z0, z1) ∈ Π(µ0, µ1).

The Simplification (Decomposition): In FM, velocities are deterministic given
samples: v = vθ(x, t). This implies a decomposable structure for the coupling:

π(z0, z1) = πx(x0, x1)︸ ︷︷ ︸
Sample Coupling

· δvθ(x0,0)(v0) · δvθ(x1,1)(v1)︸ ︷︷ ︸
Deterministic Velocity Assignment

. (100)
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Efficient Implementation via Decomposable Structure
The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT
problem on samples:

argmin
πx∈Π(ρ0,ρ1)

E(x0,x1)∼πx

[
12‖x1 − x0 − v̄x0,x1‖2 + ‖ṽx0,x1‖22

]
, (101)

where ρ0, ρ1 are marginals on X , and velocities are fixed by the current model:
▶ v̄x0,x1 = 1

2(vθ(x0, 0) + vθ(x1, 1)) (Mean Velocity)
▶ ṽx0,x1 = vθ(x1, 1)− vθ(x0, 0) (Velocity Difference)

Computational Complexity Analysis:
▶ Exact OT (Linear Program): O(B3 log ‖C‖∞).
▶ Sinkhorn Algorithm (Approximation): O(B2 logB).

▶ Solved efficiently via iterative matrix scaling (highly parallelizable).
▶ Recovers exact OT solution when ϵ→ 0.
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Algorithm Scheme: OAT-FM Training Loop
Algorithm 1 OAT-FM Training Procedure
Require: Pre-trained model vθ0 , Dataset D, Batch size B, EMA rate λ.
Ensure: Refined velocity field vθ.
1: Initialize vθ ← vθ0 .
2: while training do
3: // Step 1: Data Preparation
4: Sample batch {x1,i}Bi=1 ∼ D, {x0,i}Bi=1 ∼ N (0, I), t ∼ U [0, 1].
5: Estimate boundary velocities using current model:

{v0,i ← vθ(x0,i, 0)}Bi=1, {v1,i ← vθ(x1,i, 1)}Bi=1.
6: // Step 2: Lower-Level (Coupling)
7: Compute optimal coupling T∗ by solving the reduced classic OT.
8: Sample pairs (x1, x0) ∼ T∗ to get aligned batches.
9: // Step 3: Upper-Level (Optimization)

10: Interpolate xt ← (1− t)x0 + tx1, predict vt ← vθ(xt, t).
11: Compute LOAT and update: θ′ ← θ −∇θLOAT.
12: Update EMA: θ ← stopgrad(λθ + (1− λ)θ′).
13: end while
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Application 1: Low-dimensional OT Benchmark

Experimental Setup:
▶ Tasks: 5 standard 2D distribution mapping tasks (e.g., 8gaussians → moons).
▶ Evaluation Metric: 2-Wasserstein distance and Normalized Path Energy (NPE):

NPE(vθ) =
|PE(vθ)−W2

2 (ρ0, ρ1)|
W2

2 (ρ0, ρ1)
, with PE(vθ) = Ex0

∫ 1

0
‖vθ(xt, t)‖2dt.

(102)
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Application 1: Low-dimensional OT Benchmark

Task N →8gs 8gs→moons N →moons N →scurve moons→8gs
Method W2

2 ↓ NPE↓ W2
2 ↓ NPE↓ W2

2 ↓ NPE↓ W2
2 ↓ NPE↓ W2

2 ↓ NPE↓
FM 0.58±0.16 0.24±0.01 5.80±0.06 0.05±0.02 0.15±0.07 0.27±0.05 0.81±0.39 0.08±0.04 7.39±0.45 0.96±0.05
+OAT-FM 0.31±0.09 0.02±0.01 0.08±0.03 0.01±0.01 0.08±0.03 0.03±0.01 0.90±0.18 0.03±0.02 0.28±0.10 0.04±0.02

I-CFM 0.45±0.18 0.30±0.01 0.18±0.05 1.40±0.05 0.11±0.03 0.52±0.06 1.16±0.47 0.03±0.03 0.74±0.12 1.19±0.06
+OAT-FM 0.32±0.10 0.04±0.01 0.15±0.03 0.13±0.01 0.07±0.02 0.04±0.04 1.12±0.45 0.03±0.02 0.50±0.11 0.44±0.03

VP-CFM 0.43±0.14 0.24±0.01 0.15±0.02 1.24±0.05 0.10±0.03 0.31±0.07 1.05±0.41 0.22±0.04 1.39±0.35 1.22±0.05
+OAT-FM 0.31±0.12 0.03±0.01 0.09±0.01 0.02±0.01 0.07±0.02 0.04±0.01 1.10±0.34 0.03±0.02 0.32±0.10 0.10±0.02

SB-CFM 0.51±0.10 0.01±0.01 0.13±0.04 0.03±0.01 0.08±0.03 0.04±0.03 0.79±0.29 0.04±0.02 0.36±0.14 0.03±0.02
+OAT-FM 0.34±0.08 0.03±0.01 0.07±0.01 0.01±0.01 0.09±0.04 0.10±0.04 0.80±0.18 0.02±0.02 0.25±0.08 0.03±0.02

OT-CFM 0.35±0.09 0.01±0.01 0.07±0.02 0.01±0.01 0.07±0.02 0.04±0.02 0.87±0.33 0.03±0.03 0.31±0.10 0.02±0.02
+OAT-FM 0.32±0.10 0.04±0.01 0.07±0.01 0.01±0.01 0.06±0.01 0.04±0.01 0.83±0.34 0.04±0.02 0.29±0.09 0.10±0.02
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Application 2: Unconditional Image Generation (CIFAR-10)

Method #Batch NFE↓ FID↓

FM 400K 147 3.71
FM + OAT-FM +1K 135 3.54

I-CFM 400K 149 3.67
I-CFM + OAT-FM +1K 138 3.48

OT-CFM 400K 132 3.64
OT-CFM + OAT-FM +1K 126 3.46

DDPM∗ 1K 3.17
Score SDE∗ 2K 2.38
LSGM∗ 147 2.10
2-ReFlow++∗ 35 2.30
EDM 35 1.96
EDM + OAT-FM +12K 35 1.93

Lower-level Upper-level Phase-1 Method
Problem Problem FM EDM
Without Phase-2 Training 3.71 1.96
W2

2 in (94) LCFM in (94) 3.75 8.77
W2

2 in (94) LOAT in (101) 3.55 8.68
A2

2 in (101) LCFM in (94) 3.81 1.95
A2

2 in (101) LOAT in (101) 3.54 1.93
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Application 3: Large-scale Conditional Image Generation

(a) SiT-XL (Left) v.s. + OAT-FM (Right) (b) SiT-XL (Left) v.s. + OAT-FM (Right)

(c) SiT-XL (Left) v.s. + OAT-FM (Right) (d) SiT-XL (Left) v.s. + OAT-FM (Right)

Figure 1: Visual comparison for SiT-XL vs. SiT-XL + OAT-FM (CFG=4.0).
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Application 3: Large-scale Conditional Image Generation
Method #Epochs FID↓ sFID↓ IS↑ P↑ R↑
BigGAN-deep 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL 2.30 4.02 265.1 0.78 0.53
Mask-GIT 6.18 - 182.1 - -
ADM-G/U 3.94 6.14 215.8 0.83 0.53
CDM 4.88 - 158.7 - -
RIN 3.42 - 182.0 - -
Simple DiffusionU-ViT, L 2.77 - 211.8 - -
VDM++ 2.12 - 267.7 - -
DiT-XLCFG=1.5 2.27 4.60 278.2 0.83 0.57
SiT-XLCFG=1.5, Sampler=ODE 1,400 2.11 4.62 256.0 0.81 0.61
SiT-XLCFG=1.5, Sampler=ODE + OAT-FM +5 2.05 4.62 259.4 0.80 0.61
SiT-XLCFG=2.5, Sampler=ODE 1,400 6.91 6.42 391.5 0.89 0.47
SiT-XLCFG=2.5, Sampler=ODE + OAT-FM +5 6.57 5.98 394.8 0.89 0.49
SiT-XLCFG=1.5, Sampler=SDE 1,400 2.05 4.50 269.6 0.82 0.59
SiT-XLCFG=1.5, Sampler=SDE + OAT-FM +5 2.00 4.43 275.1 0.82 0.59
SiT-XLCFG=2.5, Sampler=SDE 1,400 7.75 6.64 405.0 0.90 0.45
SiT-XLCFG=2.5, Sampler=SDE + OAT-FM +5 7.44 5.77 409.9 0.90 0.46
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Application 3: Large-scale Conditional Image Generation
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Summary

▶ OT-CFM shows the potential dynamic OT in generative modeling.
▶ Proposes OAT-FM to straighten flow trajectories by minimizing acceleration in

the joint sample-velocity space
▶ Introduces an efficient two-phase fine-tuning paradigm that improves pre-trained

models without distribution drift
▶ Achieves superior generation quality on high-dimensional tasks (e.g., CIFAR-10,

ImageNet) with minimal training overhead
▶ Paper: https://arxiv.org/pdf/2509.24936
▶ Code: https://github.com/AngxiaoYue/OAT-FM
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Thank you!

https://hongtengxu.github.io

https://github.com/HongtengXu

hongtengxu@ruc.edu.cn
AAAI’22 Tutorial on Gromov-Wasserstein Learning
IJCAI’23 Tutorial on OT-based Machine Learning
AAAI’26 Tutorial on OT-based Machine Learning
https://hongtengxu.github.io/talks.html
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