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Distribution Comparison and Transformation: Key Learning Tasks

Shape Matching and Interpolation Image (Conditional) Generation
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Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ToG, 2015
Flow Matching for Generative Modeling. ICLR, 2023.

Large language diffusion models. NeurlPS, 2025.
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Distribution Comparison and Transformation: Key Learning Tasks

A PO A P1

Distribution
Transformation

Distribution
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» Data Clustering, Domain Adaptation, Metric Learning, Representation Learning,
Generative Modeling, ...

» Optimal transport theory provides solid and effective solutions to distribution
comparison and transformation.
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Origin: The Monge-form of The Optimal Transport Problem

A Transport Map Push-forward of pg
T: X — X pP1 = T# Lo

po " T~ P

A

A metric space: (X, d)
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?
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A

A metric space: (X, d)
Gaspard Monge (1746-1818) The Monge-form of OT problem proposed in 1781.

Key question: How to find a map that minimizes the transport cost?
» The p-order Monge problem:

. 1/p
My(po. 1) = (inf / P T@) du() ' st Tam=p
T Jyex ~——— —
cost per sample measure preserving

» Notably, the minimizer of (1) may not exist, e.g., po is a Dirac measure while p;
is not.
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From Transport Map to Transport Plan: The Kantorovich-form of OT

Po

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939

» Find a transport plan/coupling to minimize the expected cost.
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) 1/p
Wp(po, p1) i= (inf &z, y)m(z, y)dady)
T (wﬁ’/)eXQ
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From Transport Map to Transport Plan: The Kantorovich-form of OT
P1

Leonid Kantorovich (1912-1986) The Kantorovich-form of OT proposed in 1939

» Find a transport plan/coupling to minimize the expected cost.

. 1/p
Wp(po, p1) i= (inf @¥(z,y)m(x, y)dady
g (wﬁ’/)eXQ
Er yr [ (2.9)] (2)
s.t. m e (po, p1) = 7r>0‘/ dm—pl,/ (-,y)dy:pg}.
X

» When d(z,y) = ||z — yl|p, W, is p-order Wasserstein distance. 16



From Transport Map to Transport Plan: The Kantorovich-form of OT

P1 P1
.o..

P 2@ ® P
Sampling or ® *—o
Discrete Measure PY o o
® oo

Given X = {xm}%:l PO = Zﬁfﬂ p0,m0z,, and Y = {yn}é\le, p1 = 27]:[:1 P1,n0y,,,
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VoY 1/p 1/p
X,Y):= i d? m»y Yn)Pmn = i D, P ) 3
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where D = [dp(xmayn)]v P = [ mn]y H(p07p1) = {P > 0|P1N = PO;PTlM = Pl}
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From Transport Map to Transport Plan: The Kantorovich-form of OT

P1 P1
.o..

Po 0@ ® P
Sampling or ® *—o
Discrete Measure PY o o
® oo

Given X = {$m}%:1 Po = Zﬁf:l P0,m0z,, and Y = {yn}rjyzlv pP1 = 25:1 P1,n0y,,,

Mo 1/p 1/p
X,Y):= i dP (T, Yn)Pmn = i D,P , (3
W)= gpin) 32 3@ Gmemiom) =, pin, (P ©)

where D = [dP (2, Yn)], P = [Pmn), U(po, p1) = {P > 0|P1ly = po, P" 1y = p1}.
» Applying the transport plan 7 /P, we allow each sample x ~ pg to be split and
mapped to multiple locations.
» If the optimal T exists, it determines an OT plan 7*/P*, so W, < M,,.
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Advantages of Optimal Transport

A valid metric for probability measures
> (P(X),W) is a metric space of probability
measures defined in X (i.e., Wasserstein
space).
» Apply to distribution comparison, fitting, and
interpolation
OT plan indicates sample pairs

» Apply to point cloud/shape/graph matching
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Computational Bottlenecks of Optimal Transport and Possible Solutions

» A constrained linear programming problem:

WP(X,Y) = in (D, P),
3 ) PG%Ir(lzgl,p1)< ) (4)

Lead to O(N?) complexity.
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Computational Bottlenecks of Optimal Transport and Possible Solutions

» A constrained linear programming problem:

WP(X,Y)= min (D, P),

p( ) PGH(po,pl)< ) (4)
Lead to O(N?) complexity.

» Solution 1: Develop efficient optimization algorithms and acceleration methods

» Sinkhorn-scaling
» Proximal point
» Bregman ADMM

» Solution 2: Apply structured/stochastic OT plan

» Stochastic optimization
» Sinkhorn-scaling with importance sparsification

» Solution 3: Explore efficient surrogates of OT distance

» Sliced Wasserstein (SW) distance
> Hilbert curve projection (HCP) distance
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Sinkhorn-scaling Algorithm for Entropic OT
Sinkhorn Distance (Entropic OT): Improve the smoothness of OT problem

WP.:= min (D,P)-cH(P), where H(P)= —(logP —1yxn,P). (5)
’ Tell(po,p1) SN—~—
Entropy

Sinkhorn distances: Lightspeed computation of optimal transport. NeurlPS, 2013.
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Sinkhorn distances: Lightspeed computation of optimal transport. NeurlPS, 2013.

The Lagrangian form of EOT is
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Sinkhorn-scaling Algorithm for Entropic OT
Sinkhorn Distance (Entropic OT): Improve the smoothness of OT problem

WP = . min (D, P)—eH(P), where H(P)=—(logP — 1y«n,P). (5)
€Il(po,p1) SN——
Entropy

Sinkhorn distances: Lightspeed computation of optimal transport. NeurlPS, 2013.

The Lagrangian form of EOT is

max min(D, P) — eH(P) + (a, P1y — po) + (b, P 15, — p1). 6
X L Tn(D, P) — H(P) + {a, PLy = po) +( M — p1) (6)

Sinkhorn-Knopp algorithm:
1. Set a kernel matrix ® = exp(—%) and a dual variable a = py.
2. Sinkhorn iteration: Repeat b + (If%a, then a < £§ until convergence.
3. P« &0 (ab").

Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 1967.
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Drawbacks of Sinkhorn-scaling in OT Problem

» EOT is sensitive to €

> A large € leads to over-smoothed OT plan
» A small € causes numerical instability

Sinkhorn Sinkhorn Sinkhorn Sinkhorn
€ =0.1 €=0.01 €=0.001 €=0.0001
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Drawbacks of Sinkhorn-scaling in OT Problem

» EOT is sensitive to €

> A large € leads to over-smoothed OT plan
» A small € causes numerical instability

Sinkhorn Sinkhorn Sinkhorn Sinkhorn
€ =0.1 €=0.01 €=0.001 €=0.0001

» The (explicit) entropic regularizer might be unnecessary

» Solve the “exact” OT problem via a Sinkhorn-like algorithm.
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Proximal Point Algorithm for “Exact” OT
1. Initialize PO pop{

2. In the k-th iteration, consider the penalty between the optimal transport and its
previous approximation

min (D, P)+ BKL(P||P¥)= min (D - BlogP®) P)—eH(P).
PGH(PO,P1)< ) &—l PGH(P07P1)<J/g_/ ) (P) (7)
Proximal term :=Blog &)
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1. Initialize PO poplT
2. In the k-th iteration, consider the penalty between the optimal transport and its
previous approximation

min (D, P)+ BKL(P||P¥)= min (D - BlogP®) P)—eH(P).
PGH(PO,P1)< ) &—2 PGH(PO,P1)<J/g—/ ) (P) (7)
Proximal term :=Llog k)

3. Apply the Sinkhorn iterations to obtain P*+1) = &) o (o) (b*))T),

G N \ \ N

Sinkhorn Sinkhorn Sinkhorn Sinkhorn IPOT IPOT IPOT IPOT
€=0.1 €=0.01 €=0.001 €=0.0001 B=1 B=0.1 =001 B=0.001

A fast proximal point method for computing exact Wasserstein distance. UAI, 2020.
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Proximal Point Algorithm = Adaptive Sinkhorn-scaling

> In the k-th iteration, denote a*)(b(*))T as AK)
» According to the algorithm, we have P¥) = k=1 o A1),
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Proximal Point Algorithm = Adaptive Sinkhorn-scaling

> In the k-th iteration, denote a*)(b(*))T as AK)
» According to the algorithm, we have P¥) = k=1 o A1),

k) — exp(_D—ﬂlﬁogP(’“)) — exp(_?> o p®

D
_ i (k—1) (k—1)
= exp< 3 ) oP ©A (8)

k :
= exp(——D) ® (AW,
B S——
Ak
> A, determines the initial point while the problem corresponding to the iteration
steps is convex.
» So proximal point algorithm implements the Sinkhorn-scaling with a decaying
weight ¢¥) = %
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Bregman ADMM: Solve OT without Sinkhorn

» The Sinkhorn-based algorithm often suffers from numerical instability issue.

» Only apply to the OT problems with entropy/KLD regularizers.
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» The Sinkhorn-based algorithm often suffers from numerical instability issue.
» Only apply to the OT problems with entropy/KLD regularizers.

Bregman ADMM: Simplifying the problem by decoupling the doubly-stochastic
constraint to two one-side constraints.

» Introduce an auxiliary variable S:

min D,P ~ minD,P st. P ecll ’.7S€H" ,P:S 9
PEH(po,pl)< ) P,S< ) (po; -) (-, p1) (9)
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Bregman ADMM: Solve OT without Sinkhorn

» The Sinkhorn-based algorithm often suffers from numerical instability issue.
» Only apply to the OT problems with entropy/KLD regularizers.

Bregman ADMM: Simplifying the problem by decoupling the doubly-stochastic
constraint to two one-side constraints.

» Introduce an auxiliary variable S:

min (D,P) & min{D,P) st. Pcll(py,-), Sell(-,p1), P=S. (9
Pen(pmpl)< ) P7S< ) (po, ) (-, p1) (9)
» Introduce

Bregman Div.

X ,—H
minmax(D, P) + (2,7 — §) + By(L,S) s.t. P € 1l(py.), S € (- p). (10)

Augmented Lagrangian

Bregman alternating direction method of multipliers. NeurlPS, 2014.
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Bregman ADMM: Solve OT without Sinkhorn

Bregman Divergence: Given a differentiable and strictly convex function ¢,

By(z,y) = ¢(z) — d(y) — (Vo(y),z — y). (11)
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Bregman ADMM: Solve OT without Sinkhorn

Bregman Divergence: Given a differentiable and strictly convex function ¢,

By(w,y) = d(z) — d(y) — (Vo(y), z — y). (11)

Commonly-used Bregman divergence:

> ¢(z) = $2% Euclidean distance By(z,y) = 1|z — y[|*.

» ¢(x) = xlogx — x: KL-divergence By(z,y) = KL(z||y) = xlog% —x+y.
Naturally, the Bregman ADMM is also applicable for various regularized OT:

» Considering the above Bregman divergence leads to the OT problems with
entropic or quadratic regularizers.

The Bregman ADMM algorithm solves the OT problems iteratively.
» Each step has a closed form.

» Sublinear convergence rate.
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Besides improving smoothness, pursuing
structured OT plans leads to efficient algorithms.
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Structured OT Problems: Low-rank Optimal Transport

» The OT problem with a rank-r OT plan: P = Qdiag™'(g)R" € I1(po, p1)

min (D, Qdiag™'(9)R ),
QRg (12)
sit. Q €(po,g), Rell(p1,g), g€ AT,
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Structured OT Problems: Low-rank Optimal Transport

» The OT problem with a rank-r OT plan: P = Qdiag™'(g)R" € II(py, p1)

min (D, Qdiag™'(9)R ),
QRg (12)
sit. Q €(po,g), Rell(p1,g), g€ AT,

> A mirror descent scheme w.r.t. the KL-divergence, leading to proximal point
algorithm in each step.

» Take the update of @ as an example:

Q") —arg  min (Q, DR™diag~' (")) + BKL(Q| Q™). (13)
QEI(po,g¥)

Low-rank Sinkhorn factorization, ICML, 2021.
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Structured OT Problems: Low-rank Optimal Transport

» Reduce the number of variables when 7 is small.

» Improve robustness to noise.

Statistical optimal transport via factored couplings. AISTATS, 2019.
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Structured OT Problems: Sparse Optimal Transport
> Replace the entropic regularizer to a quadratic regularizer:

€
min (D, P)+ —||P|>%.
Pl ( ) 2|| Fa (14)
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> Replace the entropic regularizer to a quadratic regularizer:

€
min (D, P)+ —||P|>%.
Pl ( ) 2|| Fa (14)

» Applying the L-BFGS algorithm to solve the smoothed dual formulation of (14),
the OT plan has a closed-form expression: for P* = [p},.],

1
p:nn = ;[am + b;kz - dmn]+ (15)
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Structured OT Problems: Sparse Optimal Transport

> Replace the entropic regularizer to a quadratic regularizer:

€
min (D, P)+ —||P|>%.
R ( ) 2|| Fa (14)

» Applying the L-BFGS algorithm to solve the smoothed dual formulation of (14),
the OT plan has a closed-form expression: for P* = [p},.],

1,
p:nn = ;[am + b:; - dmn]+ (15)

» This problem is highly correlated with LASSO, leading to a sparse OT plan.

Smooth and sparse optimal transport. AISTATS, 2018.
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When focusing on OT distance rather than OT
plan, more efficient algorithms can be applied.
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Approximated Sinkhorn Distance via Importance Sparsification

» Sample the OT plan randomly via importance sparsification: apply the
principle of Poisson sampling to sketch the kernel matrix ® = [¢,,,,] to s nonzero

elements:
P e 9" @ with prob.¢* = min{1 s
® = [¢mn], Where qun = Amn P . qmn { y @mn } (16)
0 otherwise.

SINKHORN | SPAR-SINK

P*

Sampling probability ¢,

Importance Sparsification for Sinkhorn Algorithm. JMLR, 2023.
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Approximated Sinkhorn Distance via Importance Sparsification

» Intuitively, when d,,,,p;,,, is large, we should sample it with a high probability.
However, py. . is unavailable.
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Approximated Sinkhorn Distance via Importance Sparsification

» Intuitively, when d,,,,p;,,, is large, we should sample it with a high probability.
However, py. . is unavailable.
» In practice, the sampling probability ¢,y is set as the upper bound of dy,np},..:

» Bounded distance/cost: d,,, < co
» Bounded OT plan: p,., < po.ms Pin

\/Po,mP1n
dmnpmn €0/ PO,mPIn = Gmn = : :
B Zm n vV POmPLn

(17)
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» Reduce the complexity from O(N?) to O(Nlog N) when s ~ Nlog N.
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Approximated Sinkhorn Distance via Importance Sparsification
» Intuitively, when d,,,,p;,,, is large, we should sample it with a high probability.
However, py. . is unavailable.

» In practice, the sampling probability ¢,y is set as the upper bound of dy,np},..:

» Bounded distance/cost: d,,, < co
» Bounded OT plan: p,., < po.ms Pin

\/Po,mP1n
Zm,n v/ PO,mP1n

dmnpmn = €0/ PO,mP1Ln = Gmn =

» Reduce the complexity from O(N?) to O(Nlog N) when s ~ Nlog N.

» The approximation error between W, . and WW is bounded:

—~ N3—2c
Whe = Whel < ce

, where ¢ >0, a € (0.5,1). (18)

Importance Sparsification for Sinkhorn Algorithm. JMLR, 2023.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

When dim(X) = 1, W, has a closed form, related to 1D
histogram transform and equalization.

»(P0, p1) / 1P (2) — G7(z) ypdz)” " (19)

where F,G : X — [0, 1] are CDF’s of py and p1.

1
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

When dim(X) = 1, W, has a closed form, related to 1D A

histogram transform and equalization.

1

v
»(p0, p1) /!F _l(z)]pdz> p, (19) z

where F,.G : X — [0, 1] are CDF's of py and p;. 0 -

For 1D 1 < ... < xn and y1 < ... < yn, identity permutation leads to the optimal
transport between them.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

When dim(X) = 1, W, has a closed form, related to 1D 4

histogram transform and equalization.

1

v
»(p0, p1) /!F _l(z)]pdz> p, (19) z

where F,.G : X — [0, 1] are CDF's of py and p;. 0 -

For 1D 1 < ... < xn and y1 < ... < yn, identity permutation leads to the optimal
transport between them.

> Given = = {2, })_; ~ po and y = {y,})_; ~ pu:

W) = (X o0~ o) (20)

Sliced and radon Wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision, 2015.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Let § ~ pgp-1 be random projection directions,
and Ry be the corresponding random
projection, i.e., Ry(z) = (x,0) for x ~ po, p1.

» Ry pushes pg, p1 forward 1D distributions
Roxpo, Rosp1-
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Let 0 ~ pgp-1 be random projection directions,
and Ry be the corresponding random
projection, i.e., Ry(x) = (x,0) for x ~ po, p1.

» Ry pushes pg, p1 forward 1D distributions
Ryypo, Roxp1-

» Sliced-Wasserstein distance:

SWo(po; p1)
:=]E9NT,SD_1 [Wp(RG#pO7 RH#PI)] (21)

= /6 - 1Wp(Re#P0,R9#p1)p(9)d9
csD-

Sliced and radon wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision, 2015.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Practical implementation:
> Finite samples: X = {z,,})_; and Y = {y,}}_,
> Finite projections: {0,}7, ~ psp-1.
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Practical implementation:
> Finite samples: X = {7} and Y = {y,}2_;
> Finite projections: {0,}7, ~ psp-1.

» Sample-based sliced Wasserstein distance:
1/p

SWP(X7 Y) = Z Z min Z ‘Hl—rwm/ - Hl—ryn’ppmn

L N
I— PGH(%lN,%lN)

1 m,n=1
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Sliced Wasserstein: A Surrogate of Wasserstein Distance

» Practical implementation:
> Finite samples: X = {7} and Y = {y,}2_;
> Finite projections: {0,}7, ~ psp-1.

» Sample-based sliced Wasserstein distance:

1/p

N
: T T
min Z ‘91 Lm — 9[ yn’ppmn

SW,(X,Y) =
p( ) PGH(%lN,%lN)

SIS
M=

m,n=1

1/p
0 m 9 on
( Urgg}VZ!zL zy(ﬂ)
1 1/p
< Z |el Lsort(n el—rysort(n)|p>
n=1

=1

I
S
Mh

=1

MH
Mh

=1

(22)
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Extensions of Sliced Wasserstein: Max-sliced Wasserstein

» Max-sliced Wasserstein (MSW): Instead of randomly sampling projections,
learn the optimal one in an adversarial way:

MSEWp(po, p1) := oax Wy (Ro#po, Rosp1)- (23)

27 /146



Extensions of Sliced Wasserstein: Max-sliced Wasserstein

» Max-sliced Wasserstein (MSW): Instead of randomly sampling projections,
learn the optimal one in an adversarial way:

MSEWp(po, p1) := oax Wy (Ro#po, Rosp1)- (23)
» Given samples:
MSW (X,Y) := max (m'n i 07z, — 07 |p)1/p (24)
D ) = P UE’})N Z L, Yo (n) .
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Extensions of Sliced Wasserstein: Max-sliced Wasserstein

» Max-sliced Wasserstein (MSW): Instead of randomly sampling projections,
learn the optimal one in an adversarial way:

MSEWy(po, p1) = oax Wo(Rospo, Roxp1)- (23)
» Given samples:
MSW (X,Y) := max (m'n i 07z, — 07 |p)1/p (24)
D ) = P UE’})N Z Tn Yo (n) .

» MSW, is strongly equivalence to W,,: for p = 1,2,
30 < 1 < e, ClMSWp < Wp < CQMSWP. (25)

Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.
Subspace robust Wasserstein distances. ICML, 2019.

Strong equivalence between metrics of Wasserstein type. 2021.
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Extensions of Sliced Wasserstein: Generalized Sliced Wasserstein

> Generalized sliced Wasserstein (GSW): Replacing the linear projections to
nonlinear ones (by generalized Radon transformation or a neural network)

gSWp(pO; Pl) = Wp(FH#pOa F@#pl)p(e)dea
FpeQ (26)

MGEWp(po, p1) = ggé Wy (Fospo, Fozp1)

where Fy € ) is the generalized Radon transformation and 6 is rotation angle.
P Alternating optimization is applied to compute these variants.

Generalized sliced wasserstein distances. NeurlPS, 2019.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

» Linear projections used in SW often break the locality-preserving property.

» Nonlinear projections used in GSW requires additional learning.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

» Linear projections used in SW often break the locality-preserving property.
» Nonlinear projections used in GSW requires additional learning.

Hilbert Curve Projection Distance: apply Hilbert curve, a special kind of
space-filling curve, to achieve projections with the locality-preserving property.
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Linear Hilbert
Curve Proj.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

> A K-order Hilbert curve Hg:

> Partition the [0, 1] and D-dimensional unit hyper-cube [0,1]” into (25)P parts.

» Construct a bijection between them.

1 order Hilbert Curve

2 order Hilbert Curve

3 order Hilbert Curve

05

05
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

> A K-order Hilbert curve Hg:
> Partition the [0, 1] and D-dimensional unit hyper-cube [0,1]” into (25)P parts.
» Construct a bijection between them.

1 order Hilbert Curve 1o 2 order Hilbert Curve 1o 3 order Hilbert Curve

> Space-filing curve H(z) = limg oo Hg () is a surjection H : [0, 1] — [0, 1]%.
> H covers the entire hyper-cube and enjoys the locality-preserving property:

1H (2) = H(y)l2 < 2vVd+ 3|z — y|'/?, Va,y € [0,1]. (27)

30/146



Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

» Given a probability measure p defined on a hyper-cube €2, denote its Hilbert
curve as H, : [0,1] — Q,,.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

» Given a probability measure p defined on a hyper-cube €2, denote its Hilbert
curve as H, : [0,1] — Q,,.

> The CDF of p along H,, is g,(t) = inf.cpo ,0< H,([0, 5]) ) for t € [0, 1.
———

A Borel set in
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

» Given a probability measure p defined on a hyper-cube €2, denote its Hilbert
curve as H, : [0,1] — Q,,.
> The CDF of p along H,, is g,(t) = inf.cpo ,0< H,([0, 5)) ) for t € [0,1].
——
A Borel set in

» The Hilbert Curve Projection (HCP) distance determines OT plan via 1D
Wasserstein along Hilbert curve:

=

HCP PUaPl / HHPU ngu )) le ngl ( ))HgdZ) (28)
z G- 1

Hilbert curve projection distance for distribution comparison. TPAMI, 2024.
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Extensions of Sliced Wasserstein: Hilbert Curve Projection Distance

a)20 3 b c d)2
@ e ®) © @
| -
1.5 AA A A A AA A
= 4 mm
i
o ) cr—l\ LC_l Ciy Ci6y L
Ah
NLEL]
05 = : Y VY SN
Tl e A R Chox n

0.0 0.5 1.0 15 2.0

1. Project D-dimensional samples along their K-order Hilbert curves, and determine
the OT plan accordingly. (O((N + M)DK))

2. Determine the OT plan via sorting the projected samples.
(O(Nlog N + Mlog M))
3. Compute the HCP distance by the raw samples and the OT plan.

Hilbert curve projection distance for distribution comparison. TPAMI, 2024.
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Summary
» W, and its variants (e.g., SW,, MSW,, HCP,, and so on) provide valid metrics
for probability measures.
> MSW, is strongly equivalent to W,
> SW, is weakly equivalent to W,
» HCP, is an upper bound of W,
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» W, and its variants (e.g., SW,, MSW,, HCP,, and so on) provide valid metrics
for probability measures.
> MSW, is strongly equivalent to W,
> SW, is weakly equivalent to W,
» HCP, is an upper bound of W,
» Efficient approximation methods (Sinkhorn, Proximal Point, Bregman ADMM,
etc.) are proposed with the help of various regularizers.
> Sublinear convergence rate (i.e., O(1/€?) steps to achieve e-approximation)
> Reduce the complexity to O(N?)
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» Structured OT plans (Low-rank and/or sparse OT plans) often lead to further
accelerations.
> The time complexity of low-rank OT is O(N?r) but it reduces memory cost and
improves robustness.
> Apply importance sparsification reduces the complexity to O(N log N)
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Summary
» W, and its variants (e.g., SW,, MSW,, HCP,, and so on) provide valid metrics
for probability measures.
> MSW, is strongly equivalent to W,
> SW, is weakly equivalent to W,
» HCP, is an upper bound of W,
» Efficient approximation methods (Sinkhorn, Proximal Point, Bregman ADMM,
etc.) are proposed with the help of various regularizers.
> Sublinear convergence rate (i.e., O(1/€?) steps to achieve e-approximation)
> Reduce the complexity to O(N?)
» Structured OT plans (Low-rank and/or sparse OT plans) often lead to further
accelerations.
> The time complexity of low-rank OT is O(N?r) but it reduces memory cost and
improves robustness.
> Apply importance sparsification reduces the complexity to O(N log N)
P Potential applications:
» Distance-centric applications: design loss functions for representation and generative
models
» OT plan-centric applications: solve matching problems and design models.
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Thanks!
5-min break and QA



Part 1 Computational Optimal Transport (Hongteng Xu)

» Preliminaries and basic concepts
» Typical computation methods

Part 2 Representation Learning Driven by OT (Dixin Luo)

» OT-based multi-modal learning
» Monge gap and its Gromovization for information bottleneck

Part 3 Neural Network Design Driven by OT (Minjie Cheng)
» OT-based Transformer
» OT-based graph neural network
Part 4 Recent Progress in Generative Modeling (Hongteng Xu)

» OT-based flow matching
» Applications of optimal acceleration transport
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Motivation: How to Improve Representation Learning?

Generator Pz

Representation (Decoder)
Model —

+ (Encoder) g —
=f #px 7|
\

h —
L—

Predictor

(Classifier/Regressor)

> Representation learning aims to obtain informative and structured latent
representation of data, supporting downstream discriminative and generative tasks.
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Motivation: How to Improve Representation Learning?

Generator Pz

Representation (Decoder)
Model —

+ (Encoder) g —

p

f # T 7
\

h —
L—

Predictor

(Classifier/Regressor)

> Representation learning aims to obtain informative and structured latent
representation of data, supporting downstream discriminative and generative tasks.

> Can we learn the encoder as an optimal transport map? What is its

benefit?
36/146



Outline

1. Learning Encoders as an Optimal Transport Map

» Monge gap: a regularizer of neural optimal transport
» Gromov-Wasserstein distance and Gromov-Monge gap
» Gromov-Wasserstein Information Bottleneck

2. Optimal Transport Driven Multi-modal Learning

» Gromov-Wasserstein barycenter for kernel fusion
» Hierarchical optimal transport for multi-modal representation
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Benefits and Challenges of OT Encoders

Let's start with a simple scenario: learning an OT encoder as a Monge map in
T : X — X under a cost function ¢, without dimension reduction, i.e.,

T = arg inf/ c(a:,T(x))dx, s.t. Prarget = T psource- (29)
T Jzex
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Benefits and Challenges of OT Encoders

Let's start with a simple scenario: learning an OT encoder as a Monge map in
T : X — X under a cost function ¢, without dimension reduction, i.e.,

T = arg inf/ c(a:,T(x))dx, s.t. Prarget = T psource- (29)
T Jzex

A natural, physically meaningful way to suppress over-fitting and mode collapse
» Suppress the folding of latent space by minimizing the cost/geometric distortion:
» The norm-induced (c¢(z,y) = ||z — y||,) latent space tends to inherit the

Wasserstein geometry:

For po, p1 € P(X), Wy(po, p1) = 1T p0, Tiprly- (30)

» Almost everywhere reversible.
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Benefits and Challenges of OT Encoders

Let's start with a simple scenario: learning an OT encoder as a Monge map in
T : X — X under a cost function ¢, without dimension reduction, i.e.,

T = arg inf/ c(a:,T(x))dm, s.t. Prarget = T psource- (29)
T Jzex

A natural, physically meaningful way to suppress over-fitting and mode collapse
» Suppress the folding of latent space by minimizing the cost/geometric distortion:
» The norm-induced (c¢(z,y) = ||z — y||,) latent space tends to inherit the

Wasserstein geometry:

For po, p1 € P(X), Wy(po, p1) = || Ty po, Tsp1llp- (30)

» Almost everywhere reversible.
Challenges
» As aforementioned, Monge map may not exist.
> Even if it exists, it is hard to compute it exactly.
» Learning T as a neural network (i.e., neural transport) often suffers over-fitting.
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Monge Gap: An Effective Regularizer of Neural Transport

» Recall that if the optimal transport map 7™ exists, it determines a
transport plan 7, so

Wyp(po, p1) < My(po, p1)- (31)
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Monge Gap: An Effective Regularizer of Neural Transport

» Recall that if the optimal transport map 7™ exists, it determines a
transport plan 7, so

Wp(po, p1) < My(po, p1)- (31)

» Therefore, given an encoder T', we can define and penalize a Monge gap to make
it approach to an OT map:

MGY(T) = Epople(x, T(x))] — inf Eg,oxlc(z,vy)].
S(T) = Barle@, T@)] = __inf Beporle(o.y) -
>Mp(p,T4p)
=W(p,Txp)
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Monge Gap: An Effective Regularizer of Neural Transport

» Recall that if the optimal transport map 7™ exists, it determines a
transport plan 7, so

Wp(po, p1) < My(po, p1)- (31)

» Therefore, given an encoder T', we can define and penalize a Monge gap to make
it approach to an OT map:

MGY(T) = Epople(x, T(x))] — inf Eg,oxlc(z,vy)].
(1) = Eunyle(r T@))] = _inf  Eqyrle(r.) >
2My(p,Tep)
=W(p,Txp)
> Given X = {z,})_, ~p, T(a:n) ~ Typ:
c : 1/2
MG( NZ T, T () gég(DT,P) ) (33)

where D = [c(x,,, T(x,,))] € RVXV,
The Monge Gap: A Regularizer to Learn All Transport Maps. ICML, 2023 39146



Monge Gap: An Effective Regularizer of Neural Transport

Useful properties:
> MGS(T) >0, Vf.
> T'is an OT map between p and Typ iff MG (T) = 0.
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Monge Gap: An Effective Regularizer of Neural Transport

Useful properties:

> MGS(T) >0, Vf.

> T'is an OT map between p and Typ iff MG (T) = 0.

Regularizing representation learning by
Monge Gap: given a source distribution g
and a target distribution v in (X, ¢):

min_Loss(Typ,v) +AMG(T). (34)
T: X=X e —— ———

target fitting c-optimality

No Monge Gap

Menge Gap: c(x, y) = [x = ylz

The Monge Gap: A Regularizer to Learn All Transport Maps. ICML, 2023
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How to Apply Monge Gap across Incomparable Spaces?

Pz = f#pa:

» In general, p, and p, are in different spaces (representation learning achieves
information compression).

> MG, (f) becomes inapplicable because both M,, and W, are undefined across
incomparable spaces.
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How to Apply Monge Gap across Incomparable Spaces?

Pz = f#pa:

» In general, p, and p, are in different spaces (representation learning achieves
information compression).

> MG, (f) becomes inapplicable because both M,, and W, are undefined across
incomparable spaces.

» Solution: Gromovization of Monge gap by defining OT distance across
different spaces.

41/146



Gromovization of Classic OT Distances

'

Gaspard Monge Leonid Kantorovich Facundo Memoli Karl-Theodor Sturm Mikhail Gromov
18-20th Century 2006-2011 1980s
Compare distributions Compare metric measure spaces Compare metric spaces
Monge distance, Wasserstein Distance Gromov-Wasserstein Distance Gromov-Hausdorff Distance

On the geometry of metric measure spaces. Acta Mathematica, 2006.

Gromov—Wasserstein distances and the metric approach to object matching. Foundations of computational

mathematics, 2011.
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Gromov-Monge Distance: Pursue OT Map across Spaces

(X, d, po Typo = pr (V. ¢, p1)
T .T
T(x),T( x’))

Push forward across spaces

Given two metric-measure (mm) spaces (X', d, po) and (Y, ¢, p1), the p-order
Gromov-Monge distance between them is

: / / / / 1/
GMy(, V) = inf / [dlr,2!) = e(T(@), T(@)P po)po(a’)dada’) ",
e =r(z,2’,T(z),T(z')) (35)

s.t. p1 = Typo,
where r is relational distance.

Distance distributions and inverse problems for metric measure spaces. Studies in Applied Mathematics, 2022. 43/146



Gromov-Wasserstein Distance: Pursue OT Plan across Spaces
(dev /00) (ya ¢, /)1)

. d(z, ) ‘
\—;\/

r(z, 2’ y,y) c(y,y")

Relational distance across spaces

44 /146



Gromov-Wasserstein Distance: Pursue OT Plan across Spaces
(X7d7 /00) (ya & ,01)

d(z, ")

r(z, 2’ y,y) c(y,y")

Relational distance across spaces

p-order Gromov-Wasserstein distance: Minimize expected relational distance
r(z, 2 y,y) = |d(x, ") — e(y, y)|P, ie.,
Relational distance

3 / / / / / / 1
W)= nf ) st y)ardrayay)
X

m€ll(po,p1)

/p
(36)

J/

]E(:l:,y),(;r:’,y/)~7r><7r[T(xvmlvyvy/)]
On the geometry of metric measure spaces. Acta Mathematica, 2006.

Gromov—Wasserstein distances and the metric approach to object matching. Foundations of computational

44 /146



Gromov-Wasserstein Distance: Pursue OT across Spaces
(X>d7p0) (y,C,pl)

: d(x,z") ‘

\_/

r(z, 2’ y,y) c(y,y")

Relational distance across spaces

Given X = {z,,}}_| with a probability measure py, and Y = {y,,}V_; with p;:

. M N 1/p
ng(DX’DY) - <P€11:[r(1}71(;17P1) Zm,m’:l Zn,n’:l T(xm’%n/’ ymyn/)pmnpm/n/) ’(37)
where Dy = [d(x,,2))], Dy = [¢(yn, y,)].
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Gromov-Wasserstein Distance: Pursue OT across Spaces
(X7d>p0) (yvc7pl)

. d(z,z)
D\—;\/

r(z, 2 y,y') c(y,y)

Relational distance across spaces

Given X = {z,,}M_, with a probability measure pg, and Y = {yn} _, with py:

. 1/p
ng(DX7DY) = < min Zm mi—1 Zn =1 T(]Jm,l'm/, ynayn’)pmnpm’n/>

Pell(po,p1)

where Dx = [d(xy, 2,)], Dy = [c(yn; yn)].
> 7% or P*: the optimal transport plan between samples.
> 1" x 7 or P*® P*: the optimal transport plan between sample pairs.
> Useful properties: Translation-, rotation-, and permutation-invariance

,(37)
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Typical Computation Methods of GW Distance

» When p =2, ¢(-,-) and d(-,-) are Euclidean metrics, GW distance can be
rewritten in a matrix format:

min (C — 2Dy PDy., P). 38
PGH(P(J7P1)< X Y > ( )

> Dx = [[[zn —27,|3], Dy = [llyn — },13]
> C=(X0X)lgun+1Iyxa, (YOY)T.

Gromov-Wasserstein averaging of kernel and distance matrices. ICML, 2016.
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Typical Computation Methods of GW Distance
» When p =2, ¢(-,-) and d(-,-) are Euclidean metrics, GW distance can be
rewritten in a matrix format:

min (C —2DyPDy., P). 38
Pen(po,p1)< xPDy, P) (38)

> Dx = [[lzn — 27 [13), Dy = [lyn — ynll3]
> C = (X ®X)1dx><N + 1N><dY(Y@Y)T.

Gromov-Wasserstein averaging of kernel and distance matrices. ICML, 2016.

» Given N samples, Conditional Gradient (CG) descent leads to O(N?) and
sparse OT plans. In the k-th iteration:

P=arg min (C-2DxP%D] P)
Pell(po,p1) —
O(N3) (39)
P — (1 — 7Y p®) L 7K P \where 7(*) is determined by line-search.

Optimal transport for structured data with application on graphs. ICML, 2019.
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Typical Computation Methods of GW Distance

» Similar to Wasserstein distance, adding entropy and KL-divergence regularization
improves the smoothness of the problem.

min (C —2DxPDy., P) + ¢H(P). (40)
Pell(po,p1)
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Typical Computation Methods of GW Distance
» Similar to Wasserstein distance, adding entropy and KL-divergence regularization
improves the smoothness of the problem.

min (C —2DxPDy., P) + ¢H(P). (40)
Pell(po,p1)

> lterative Sinkhorn-scaling solves this problem, leading to faster convergence but
smooth OT plan

P*D —arg  min  (C —2DxP®DJ P)+ cH(P). (41)
Pell(po,p1)

Gromov-Wasserstein averaging of kernel and distance matrices. ICML, 2016.
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Typical Computation Methods of GW Distance
» Similar to Wasserstein distance, adding entropy and KL-divergence regularization
improves the smoothness of the problem.

min (C —2DxPDy., P) + ¢H(P). (40)
Pell(po,p1)

> lterative Sinkhorn-scaling solves this problem, leading to faster convergence but
smooth OT plan

P*D —arg  min  (C —2DxP®DJ P)+ cH(P). (41)
Pell(po,p1)

Gromov-Wasserstein averaging of kernel and distance matrices. ICML, 2016.

> Iterative Proximal Gradient is also applicable, which computes exact GW
distance with adaptive Sinkhorn-scaling.

P —arg  min  (C —2DxP® D), P)+ KL(P||PW), (42)
PeIl(po,p1)

Scalable Gromov-Wasserstein learning for graph partitioning and matching. NeurlPS, 2019.
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Typical Computation Methods of GW Distance

> Bregman ADMM: Decouple doubly stochastic constraint of P. Alternating
optimization is applied to solve the problem in augmented Lagrangian form:

min (C —2DxSDy, P)
Pell(po,-),S€ll(-,p1), T=8 (43)
= min max(C — 2Dy SDy, P) + (Z,T — S) + ¢By(T, S).

Pell(po,),Sell(-,p1)

Each step has a closed-form solution when By = KL.
Gromov-Wasserstein factorization models for graph clustering. AAAI, 2020.

Representing graphs via Gromov-Wasserstein factorization. TPAMI, 2022.
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Typical Computation Methods of GW Distance

> Bregman ADMM: Decouple doubly stochastic constraint of P. Alternating
optimization is applied to solve the problem in augmented Lagrangian form:

min (C —2DxSDy, P)
Pell(po,),Sell(-,p1), T=S (43)
= min max(C — 2Dy SDy, P) + (Z,T — S) + ¢By(T, S).

Pell(po,),Sell(-,p1)

Each step has a closed-form solution when By = KL.
Gromov-Wasserstein factorization models for graph clustering. AAAI, 2020.

Representing graphs via Gromov-Wasserstein factorization. TPAMI, 2022.

» Sliced GW is a theoretically incorrect but practically useful surrogate of GW.
Sliced Gromov-Wasserstein. NeurlPS, 2019.

On assignment problems related to Gromov—Wasserstein distances on the real line. SIAM Journal on Imaging

Sciences, 2023.
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Gromovized Monge Gap

Accordingly, given X = {x,,})_, defined in the mm-space (X, d, p), the Gromovized
Monge Gap of T is defined as

GMGL™(T)
::Emvx,prp[r(x, :C/7 T(z), T(a}’))] - eHl(lng ) E(m7y)7(:p’,yf)7r><7r[7”(I, 35/, Y, y/)]
T WL #
>GM(p,Tsp) :gw@T#p) (44)
R D3
3 ot T T)) — i 30 5 rlowalomif)
n,n’:l n,n/=1 m’m/:1

Revisiting Counterfactual Regression through the Lens of Gromov-Wasserstein Information Bottleneck. Arxiv,
2024.

Disentangled Representation Learning with the Gromov-Monge Gap. ICLR, 2025.
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Representation Learning with Gromovized Monge Gap

Representation
Model
. (Encoder)

<‘ A A

Suppose that = ~ p,. Given a dataset D = {(2p, yn)})—;, we have
n}in E(zy)~plLoss(co f(z),y) + )\QMQZ;T(f)

Predictor
(CIaSS|f|er/Regressor

(45)

Dx — Dy|? .
IDx = Dzl _ min(C — 2DxPD},, P)

N
1

= in — L n n '

min 3:1 oss(co f(xn),yn) + >‘< N2 Pell )

> Dx = [lzn — a7, [3], Dz = [[[f(za) — f(2},)I3]
> C=(X0X)lpxn+1Inxp(X 0 X)T.
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The Connection to Information Bottleneck

Representation
Model
p . (Encoder)

& A5

The rationality of Gromovized Monge gap can be explained in the information
bottleneck framework:

min —1(Z, Y)+ M(X, Z), where I(X, 2) = KL(p(X, 2) |[p(X)p(2)).  (46)

Fitting Acc.  Complexity Reg.

Predictor
(CIaSS|f|er/Regressor

» Penalizing —I(Z,Y) corresponds to fitting data, which is often implemented as
negative log-likelihood.
» Penalizing I(X, Z) regularizes the complexity of representation model.

The information bottleneck method. Allerton Conference on Communication, Control, and Computing, 1999.
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The Connection to Information Bottleneck
Given {x,}_, and f, the RBF kernel density estimations of the distributions are

N
0= St )= St w2 Stz
=1 n=1

=1
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The Connection to Information Bottleneck
Given {x,}_, and f, the RBF kernel density estimations of the distributions are

N
0= St )= St w2 Stz
=1 n=1

=1

Based on N samples, the empirical mutual information between X and Z as

IN(Z, X f) = Z g :En,zn _ Zlog N> K@, Tm)E(2n, 2m) ‘

m B (Zn, Tm) D K(2ns 2m)
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The Connection to Information Bottleneck
Given {a:n}flvzl and f, the RBF kernel density estimations of the distributions are

N

=1

Based on N samples, the empirical mutual information between X and Z as

IN(Z, X f) = Z g :En,zn _ Zlog N> k(T ) K (20 2m) ‘

m B (Zn, Tm) D K(2ns 2m)

When using RBF kernel with bandwidth 7, we have

d,r
1 GMGy" (f)
2 2 P
I (Z X)_ HDx—Dz||F—gW2(Dx,Dz) +CN:7+CN.(47)
27 9,2 N2 272
Revisiting Counterfactual Regression through the Lens of Gromov-Wasserstein Information Bottleneck. Arxiv,
2024.
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Application in Graph Contrastive Learning

Graph
Embedding

Layer 1 Layer 2 Layer K

Augmentation via Node Embeddings Node Embeddings Node Embeddings

Subgraph Sampllng Projection > |
- - > . & Readout I

Classic
SGW‘ ‘SGW ‘SGW Contrastive
SGW SGW Loss

Layer 1 Layer 2 Layer K |
Node Embeddings Node Embeddings Node Embeddings
h —p Projection _ 8
e » & Readout ||
Graph. .

Embedding
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Application in Graph Contrastive Learning

GW-based Implementation

min A\ (X, 7)) — I[(Z,Y) » Complexity regularization:
fk)
7 N (k)
Complexity Regularization Fitting Accuracy I(X’ Z) A gMg(f ) (48)

» Fitting Accuracy:

X0V ~p(x XD ~pz) X% ~p(y
Layer k-1 Layer k Layer k
Node Embeddings Node Embeddings Node Embeddings

(k) » We can apply sliced
Wasserstein and sliced GW to
reduce computational costs.
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Graph-level Classification

Biochemical Molecular Graphs

Social Networks

Datasets | \1yTaG DD  PROTEINS NCII | COLLAB IMDB-B REDDIT-B REDDIT-M5K
DGK 87.44 157> - 73.304082 80.311046 - 66.961 056 78.0410.39 41.271 018
WL 80.72i3_00 - 72-92:t0.56 80.01:t0_50 - 72-30i3.44 68.82i0_41 46.06i0_21
Graph2Vec | 83.15 925 - 73.304205 73.2217181 - 71.104054 75.78+103 47.8610.26
InfoGraph |89.0147113 72.851178 74.44.1031 76.2047106|70.651713 73.031987 82.5017142 53.4611.03
JOAOvV2 87.671079 77.404115 74.071110 78.364053|69.334034 70.83410025 86.421745 56.031¢.27
InfoGraph | 89.0147113 72.851178 74.44.1031 76.2047106|70.651113 73.031087 82.5017142 53.4611.03
AD-GCL 88.741185 75.791087 73.284047 73911077 |72.024056 70.2140968 90.07103s5 54.3310.32
GraphACL 89.88:{:1.07 79.05:&0.51 75-29;{:0,46 - 74.26:&0,43 74.53i0‘39 - -
AutoGCL 85.154110 75.754060 69.731040 78.324050|71.404070 72.004040 86.6041150 55.7140.20
HGCL 90.104080 79.204060 75.504050 - 75.8010.40 73.9010.70 - -
GCL-SPAN | 85.004080 78.78+050 75.781040 75.434040|71.401050 66.001070 86.5010.10 54.104¢.50
GCS 88.194090 76.281030 74.041040 77.181030|74.001040 72.904050 86.501030 56.3040.30
SEGA 90.214 066 78.761057 76.01ig4> 79.0041072|74.12 047 73.581044 90.211065 56.1310.49
GraphCL 86.80i1.34 78.62:{:0.40 74.39:|:0.45 77.87:‘:0‘41 71.36;&1_15 71.14:‘:()‘44 89.53:‘:0‘84 55.99:{:0.43
w. AIOTB [91.309gs 79.304 031 75.854927 79.57.(31|74.101102 73.651068 90.57_ 036 56.62_ ¢ 57
SIMGRACE | 89.011131 77.441111 75.351000 79.120044 | 71.7210g8 71.304077 89.511¢359 55.9110.34
w. AIOTB |91.87 g0 79.26_ 062 76.331036 80.45.062|74.33 1080 74.01 970 91.43. 080 57.064¢.44
RGCL 87.664101 78.864043 75.031043 78.144708|70.921065 71.8541081 90.341058 56.384.0.40
w. AIOTB [91.44 997 79.771g49 76.351039 79.871052|73.98 1074 74.45 ¢3¢ 91.81_ (45 57.204 058
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Graph-level Regression

Task Types Regression (RMSEJ) Classification (ROC-AUC %)

Datasets molesol  mollipo molfreesolv| molbace molbbbp molclintox moltox21  molsider
#Graphs 1,128 4,200 642 1,513 2,039 1,477 7,831 1,427
Avg. #Nodes 13.3 27.0 8.7 34.1 24.1 26.2 18.6 33.6
Avg. Node Degree 13.7 29.5 8.4 36.9 26.0 27.9 19.3 35.4
InfoGraph 1341018 1.01.002 10.0144gp | 74.741360 66.331279 64.50153> 69.741057 60.5410.90
MVGRL 1.43:&0_]_5 0.96:‘:0.04 9-02j:1.98 74.20:|:2.31 67.24:{:1.39 73.84:{:4‘25 70.48:‘:0‘83 61.94:‘:0.94
JOAO 1294012 0.871003 5.131072 | 74431194 67.621129 78211412 71.831092 62.7310.02
GCL-SPAN 1.2240905 0.804002 4.534046 |76.744202 695911314 80.28424> 72.83106> 64.874103s
AD-GCL 1.2210909 0841003 5.154062 |76.374203 68241147 80.77139>0 71.4240973 63.194¢.05
GraphCL 1274009 1.144002 7.684275 |74.324070 68.221189 74.924442 719241701 61.25147711
w. AIOTB 1.2049.12 1.06:‘:0.05 5'13:l:1.52 76.87 1340 69.44:‘:1,30 77.30:(:4.10 72.63i0.g7 62.80:&0.33
SImGRACE 1.30:‘:0.04 1.03:‘:0.03 5.12:{:0.71 76.44:‘:2.89 69.08:{:1.11 81.03 +4.30 72.55:‘:0'44 62.64:‘:0.82
w. AIOTB 1.22_ 905 091903 4.48_ 06s |77.521301 69.75 1092 82.5614109 73.301062 63.42 350
RGCL 1264009 1.121004 5.691067 |76.461067 70.331108 78.971465 72.274084 61.9017 05
w. AIOTB 1.20+0_07 1.01:‘:0.05 4'62+0.65 77.20+0_g5 71'21+0.61 80.05:‘:4.50 72'94+0.86 63.20+1_13
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Node-level Classification

Datasets Cora Citeseer Pubmed | Squirrel Chameleon Texas
#Nodes 2,708 3,312 19,717 | 5,201 2,277 183
#Edges 5,429 4,732 44,338 | 198,423 31,371 279
#Features | 1,433 3,703 500 2,089 2,325 1,703

GCN 87.14  79.60 86.19 34.80 58.82 74.59
w. AIOTB | 87.68 79.86 86.70 | 35.65 59.33 74.85
GAT 88.03  80.52 85.20 35.89 58.73 76.39

w. AIOTB | 88.41 81.05 85.88 | 36.26 59.08 77.84
ChebNet 85.94 79.15 87.95 36.81 56.37 83.61
w. AIOTB | 86.54 79.59  88.46 | 36.75 56.63 84.43
BernNet 87.13  79.92 86.63 46.22 67.33 89.67
w. AIOTB | 88.12 80.63  87.32 | 47.07 67.96 90.98
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When representing multi-modal data, besides
bridging sample and latent spaces, we also need

to compare and align distributions across
modalities.
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Two (Questionable) Assumptions on Multi-modal Learning

Patient 1 Patient2 .... PatientN Zq, ~ Dy v )
Clinical U j j
Radiological
Pathological
Genomic 7, A, A
Well-aligned multi-modal data Shared latent distribution
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Real-world Multi-modal Scenarios

Take healthcare data as an example:
» For patients:

» Only do some tests
» Have admissions in different hospitals
» For hospitals:
» Collect and store data independently
from different hospitals

» Complementary and heterogeneous
modalities

Hospital 3
Same patient,

but unaligned
[ (]
[ l h Latent
‘ Space
View 1
Blood aﬁ)
Test

=1 1]
=@l Il
28 1] |-
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Real-world Multi-modal Scenarios

Take healthcare data as an example:
» For patients:

» Only do some tests
» Have admissions in different hospitals
» For hospitals:
» Collect and store data independently
from different hospitals

» Complementary and heterogeneous
modalities

Hospital 3
Same patient,

but unaligned
(]
Latent
Space
View 1
Blood gﬁ)
Test

View 2 Qf;\,;j_
Drugs -@‘ E

View3
Genetic (RN ™
Test ):

Unaligned and incomplete samples + Clustered modalities in (incomparable)
latent spaces.

» Align samples across different modalities (Alignment)
» Cluster modalities and samples jointly (Co-clustering)
Optimal transport provide potential solutions.
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Traditional Multi-modal Learning Paradigms

» Multi-modal data [X1, ..., Xg] € RN*(D1+..+Ds)
> Learn latent representations implicitly or learn S encoders {f, : RPs — Z}*Sg:l.
Multi-kernel Fusion (MKF): Learn the encoders implicitly

_ _ S
maxy 15 tr(U'KU), st K = Z - as K. (50)
Canonical Correlation Analysis (CCA):

min{fs,Us S ZS;AS/ |Us o fs(Xs) — Uy 0 fs/(Xs/)H%v
s.t. (Uso fo(Xs) " Ugo fo(Xy) =1, Vs
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Traditional Multi-modal Learning Paradigms

» Multi-modal data [X1, ..., Xg] € RN*(D1+..+Ds)
> Learn latent representations implicitly or learn S encoders {f, : RPs — Z}*Sg:l.
Multi-kernel Fusion (MKF): Learn the encoders implicitly

_ _ S
maxy 15 tr(U'KU), st K = Z - as K. (50)
Canonical Correlation Analysis (CCA):

min{fs,Us S Zsyés/ HUs © fS(XS) — Uy o fs/(Xs/)H%v

(51)
s.t. (Uso fo(Xs)) Uso fo(X,) =1, Vs

> How to make them applicable for unaligned data?

» How to introduce modality-level clustering structure?
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Extend MKF to Unaligned Data via GW Barycenters
Fuse kernels by solving a GW barycenter problem:
Kernel 1 ﬁi‘zl

1
1
AR Gw
Kernel 2 ﬁ i Barycenter
1
1

maxy (.5 tr(U'KU),

_ . S
st. K € min Zs:l @, GWA (K, K,). (52)

GW barycenter

Fused Kernel

— a;
Kernel M |-/ L
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Extend MKF to Unaligned Data via GW Barycenters

Fuse kernels by solving a GW barycenter problem:

maxy (.5 tr(U'KU),

Kernel 1 ﬁial _ . S 9
st. K € min Zs:l @, GWA (K, K,). (52)

*
Kernel 2

Kernel M

b 1
: 1
: Gw E GW barycenter
! )

Fused Kernel Nested optimization:

1. Compute the barycenter iteratively

K« = ZaST* T, T + GWs(K, K).(53)

2. Plug the barycenter into the objective function:

maxy (, s tr (UT ( Zil a ;T K, (TS*)T> U) . (54)
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Extend MKF to Unaligned Data via GW Barycenters

When computing the kernels by latent codes, we obtain parametric kernels and the
Gromov-Wasserstein multi-modal alignment and clustering model:

_ S
maxy ey g5, (U KU), st. Kemin) = agWi(K, K(f) ).

param. kernel

(55)

<min GW3(K,Ic)

Modality 1 Kernel 1
-0—@—@—> —p Encoder 1 —_— i
Weighted GW Barycenter
Modality 2 Kernel 2 ;
¢ e~  BH Y
" N
L JEN Optimal
o = Encoder 2 =1 Tansports Fused Kernel
for Alignment for Clustering

/

i

|

|

i

i

: |
: Kernel M i % @

|

|

|

m |

i

i

|

|

|

i

‘

o IEstimation
Error
g ] = Encoder M
] Ground !
5] Truth
o )

Gromov-Wasserstein multi-modal alignment and clustering. CIKM, 2022.
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Multi-modal Clustering Performance

Data type Datasets HandWritten Caltech 7 ORL Movies Prokaryotic
Algorithms | ACC NMI  ACC  NMI ACC NMI ACC NMI ACC NMI
MCCA 0.8269 0.7775 0.5313 0.4716 0.3475 0.4992 0.0989 0.0722 0.5620 0.1204
Well-aligned DCCAE |0.6537 0.6216 0.4110 0.3850 0.5625 0.7373 0.1572 0.1194 0.5070 0.1827
(8 =0) AttnAE | 0.7505 0.6912 0.4600 0.4575 0.4600 0.6603 0.1880 0.1918 0.5390 0.2625
MVKSC | 0.6749 0.6376 0.5196 0.2537 0.3013 0.5291 0.2285 0.2098 0.6188 0.3191
MultiNMF | 0.8882 0.8279 0.4525 0.5120 0.6900 0.8100 0.1726 0.1856 0.5771 0.2495
50% unaligned CPM-GAN | 0.7250 0.6069 0.3472 0.3151 0.1987 0.3703 0.1210 0.1753 0.3793 0.3294
(8 = 0.5) MVC-UM - - 0.3958 0.3838 0.5863 0.7586 0.1831 0.1950 0.3950 0.0807
GWMAC |0.8469 0.8156 0.3541 0.5010 0.5322 0.7068 0.1993 0.2195 0.5515 0.3286
100% unaligned MVC-UM - - 0.3112 0.2456 0.5431 0.7452 0.1841 0.1953 0.4451 0.0554
(B=1) GWMAC |0.8144 0.7546 0.3568 0.4945 0.5118 0.7026 0.1928 0.2138 0.5479 0.3259
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Extend CCA to Unaligned Data via Sliced Wasserstein
Sliced Wasserstein Canonical Correlation Analysis (SW-CCA):

min{f&Us 5S:1 ZS;‘&S/ SW%(US o fS(XS)7 Us/ (e} fs/(Xs/))7

(56)
sit. (Uso fo(X,)) U o fo(X,) =1, Vs

> Using SW distance does not require aligned data.
> It is differentiable, just requiring random projections and sorting operations.
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Extend CCA to Unaligned Data via Sliced Wasserstein
Sliced Wasserstein Canonical Correlation Analysis (SW-CCA):

min{f&Us 5.5‘:1 Zs;és’ SW%(US o fé(X5)7 Us/ (e} fs/(Xs/))7

(56)
s.t. (Uso fo(Xs)) " Uso fo(Xs) =1, Vs
» Using SW distance does not require aligned data.
> It is differentiable, just requiring random projections and sorting operations.
Max-Sliced Wasserstein Canonical Correlation Analysis (MSW-CCA):
min{fs}ssz1 237&5/ MSW%(fS(XS)7 [ (X)), (57)

s.it. (Uso fo(Xs)) Us o fo(X,) =1, Vs

» Treat U as a linear random projector, i.e., Us : Z — R, and learn it in an
adversarial way, we have

Differentiable Hierarchical Optimal Transport for Robust Multi-View Learning. TPAMI, 2022.
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Hierarchical Optimal Transport for Modality Clustering

Aligned  Unaligned Optimal Transport

Labeled Unlabeled between Views
Data Data View 1 View2 View3 View 4
M View 1
\ vVlew2 \
e N —4
View 2 - f
| > > Classifier —»-
View 3
i - fi
View 4
— ﬁ
/
E| _ Wasserstein Space of The Views
Label
Principle:

» Further extend SW-CCA

» Capture the relations among the modalities by their OT distances.
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Hierarchical Optimal Transport for Modality Clustering

Extend SW-CCA: Learn the pairwise relations between different modalities.

min 85’8W2 US X 7USI s Xs/
pmin 3w SWEU 0 (X0, Uy 0 f(X.)
WEII(%ls-,%ls)

Hierarchical OT
+al| Y (Uso (X)) Uso fo(Xo) — I3 48 H(W) .

CCA-Regularizer (W .log W)

(58)

» Lower level: the SW distance between different modalities’ sample sets.

> Upper level: Take the SW distances as the cost matrix, compute the EOT
between the group of modalities and itself. (Set wss = 0 to avoid trivial solutions)

» W™ indicates the clustering structure implicitly by the pairwise similarity between
different modalities.
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Performance on Multi-modal Classification

Classification accuracy Classification accuracy

Classification accuracy

76
95 1
74
90
72
T T 70
85 T 80 ~T- LSCCA
-]~ DGCCA 75 DGCCA 68 - DGCCA
80 7T~ AECCA AECCA -]~ AECCA
I ~F- comIC 70 - COMIC o6 I~ coMmIC
—§— DHOT Eq.(9) 65 —4§— DHOT Eq.(9) —§— DHOT Eq.(9)
75 I —4— DHOT Eq.(10) —4— DHOT Eq.(10) 64 —4— DHOT Eq.(10)
5 10 15 20 25 5 10 15 20 25 10 15 20 25

The percentage of aligned data The percentage of aligned data

Caltech? Handwritten

The percentage of aligned data

Cathgen

Differentiable Hierarchical Optimal Transport for Robust Multi-View Learning. TPAMI, 2022.
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Summary

» Representation model can be effectively regularized to approach OT map

» Monge gap and its Gromovization provides a potential solution
» Achieve promising solution in graph representation learning
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Summary

» Representation model can be effectively regularized to approach OT map

» Monge gap and its Gromovization provides a potential solution
» Achieve promising solution in graph representation learning

» Gromovize W, leads to GW,,.

» The algorithms of W, are applicable under slight modification
» The problem becomes non-convex but the algorithms still lead to stationary points
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Summary

» Representation model can be effectively regularized to approach OT map

» Monge gap and its Gromovization provides a potential solution
» Achieve promising solution in graph representation learning

» Gromovize W, leads to GW,,.

» The algorithms of W, are applicable under slight modification
» The problem becomes non-convex but the algorithms still lead to stationary points

» In multi-modal learning, OT distances help align and cluster different modalities.

» Robust to unaligned multi-modal samples
» Hierarchical optimal transport leads to a joint framework for sample- and
modality-level learning
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Thanks!
5-min break and QA



Part 1 Computational Optimal Transport (Hongteng Xu)
» Preliminaries and basic concepts
» Typical computation methods

Part 2 Representation Learning Driven by OT (Dixin Luo)

» OT-based multi-modal learning
» Monge gap and its Gromovization for information bottleneck

Part 3 Neural Network Design Driven by OT (Minjie Cheng)

» OT-based Transformer
» OT-based graph neural network

Part 4 Recent Progress in Generative Modeling (Hongteng Xu)

» OT-based flow matching
» Applications of optimal acceleration transport
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Neural Network Design: Engineering or Art?

The progress of Al is mainly attributed to the development of model
architectures.

» Vision: AlexNet, VGG, ResNet, ViT, ...
» NLP: RNN, LSTM, BERT, GPT, ...
» Graph: Spatial and Spectral GNNs, Graph Transformer, ...

Essentially, the models serve to transform one data distribution to another.

72/146



Neural Network Design: Engineering or Art?

The progress of Al is mainly attributed to the development of model
architectures.

» Vision: AlexNet, VGG, ResNet, ViT, ...
» NLP: RNN, LSTM, BERT, GPT, ...
» Graph: Spatial and Spectral GNNs, Graph Transformer, ...

Essentially, the models serve to transform one data distribution to another.

However, till now, we only summarize very coarse and empirical design principle
for neural networks.

» The deeper, the larger, the better (Scaling Laws).

» Tricks: Dropout, Batchnorm, Non-smooth activations, Residual Connection, ...
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A Typical Example: SE(3)-Transformer

Graph or Point Cloud

RU-1LR) Classic SE(3) Attention Head Graph or Point Cloud
@ win Q" h®) RUM
1 Wik ) Softmax
- v h é (L) Z = _{((z)

The Core of 3D Molecular Models (e.g., Uni-Mol)

» Pros: Large capacity, strong representation power, SE(3)-equivariance,

» Cons: High computational complexity, poor interpretability, ...

Uni-Mol: A Universal 3D Molecular Representation Learning Framework. ICLR, 2023.

73/146



Motivation

Essentially, many existing NN layers work for information fusion
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Motivation

Essentially, many existing NN layers work for information fusion

Message-Passing

Fusion on graph

Self-Attention

Fusion in a continuous space
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Motivation

Essentially, many existing NN layers work for information fusion

Message-Passing Self-Attention
.
a 4 \\‘
N
YT
. \
DS N
Dl S
o0
Fusion on graph Fusion in a continuous space

Develop OT-based surrogates for above layers, improving interpretability and
boosting performance

> Explore the alignment principle of information fusion through the lens of OT

» Connect the alignment principle to optimization
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Outline

1 Optimal Transport Driven Transformer

» Improved Transformer Based on Wasserstein Gradient Flow
> Extension for deep geometric learning

2 Optimal Transport Driven GNN

» Optimal Transport on Graph: From continuous to discrete structured scenarios
> Label Flow and Its Amortization for GNNs
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Revisit the Dynamic Definition of OT

The displacement interpolation determined by transport map 1':

Po pe = (AT + (1 = t)Id)4po p1
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Revisit the Dynamic Definition of OT

The displacement interpolation determined by transport map 1':

p0 pi = (tT + (1 = )Id) o o

What is the relationship between optimal transport and displacement
interpolation?
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Revisit The Dynamic Definition of OT

Definition 2 (Dynamic Formulation of Optimal Transport)

Let X C R? be the Euclidean sample space. For pg, p1 € P(X), W2(po, p1)
corresponds to seeking a unique least—kinetic—energy flow (velocity field) v:

W2 (00, p1) = 1nf// (e, 0)lofe, )|3dxdt, st 0+ V.- (vp) =0 (59)

Contmmty Equation

Kmetlc Energy

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

Numerische Mathematik, 2000.
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Revisit The Dynamic Definition of OT

Definition 2 (Dynamic Formulation of Optimal Transport)

Let X C R? be the Euclidean sample space. For pg, p1 € P(X), W2(po, p1)
corresponds to seeking a unique least—kinetic—energy flow (velocity field) v:

W2(p0, p1) = 1nf// (. Dllv(a. 1) 3dadt, st 9p+ Vs (v9) =0 (59)

v(x,t

Contmmty Equation
Kmetlc Energy

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.
Numerische Mathematik, 2000.
» Solving the continuity equation with the optimal flow v* leads to the optimal
displacement interpolation between pg and p;.
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Continuity Equation

» Continuity equation describes the time rate of
change of the fluid density (9;p(z,t)) at a fixed
point x in space.

A, A, Op+ V- (vp) =0 (60)

» The rate equals to the rate of change of density by
convection (V- (vp)).
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Continuity Equation

» Continuity equation describes the time rate of
change of the fluid density (9;p(z,t)) at a fixed
point x in space.

A , Oip+ V- (vp) =0 (60)
» The rate equals to the rate of change of density by
convection (V- (vp)).

Given a sample at time ¢, i.e., xy ~ p;, we have
dIt

T v(xg,t),  Tppse = w0t v(ag,t). (61)

Euler step

78/146



Continuity Equation

» Continuity equation describes the time rate of
change of the fluid density (9;p(z,t)) at a fixed
point x in space.

A, A, at[) + V- (U,O) =0 (60)
» The rate equals to the rate of change of density by
convection (V- (vp)).

Given a sample at time ¢, i.e., xy ~ p;, we have
dIt

T v(xg,t),  Tppse = w0t v(ag,t). (61)

Euler step

Obviously, the keypoint is modeling the flow v. When the flow is a neural
network, the Euler step corresponds to a ResNet.

Neural ordinary differential equations. NeurlPS, 2018.
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Wasserstein Gradient Flow: Connect Flow to Energy Functional

» Let £ : P(X) — R be an energy functional with first variation %—f.

» The first variation of Wasserstein space analogies to the gradient of Euclidean space.
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Wasserstein Gradient Flow: Connect Flow to Energy Functional

» Let £ : P(X) — R be an energy functional with first variation %.

» The first variation of Wasserstein space analogies to the gradient of Euclidean space.

P> The Wasserstein gradient flow of E is defined by

—v

oF
o =Va-(pV.5)
p
Continuity equatio:with v = —VI%

79/146



Wasserstein Gradient Flow: Connect Flow to Energy Functional

» Let £ : P(X) — R be an energy functional with first variation %.

» The first variation of Wasserstein space analogies to the gradient of Euclidean space.

P> The Wasserstein gradient flow of E is defined by

—v

oF 1
0 :V-(V—) & =arg min F —W2(p, p;). (62
1P z\p “5p Pt+6; gpep(x) (P)+25t > (p, pt)- (62)
Continuity equatio:with v = —VI%

> Wasserstein gradient flow = Continuity equation with steepest descent velocity.

The variational formulation of the Fokker-Planck equation. SIAM Journal on Mathematical Analysis,
1998.
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Wasserstein Gradient Flow: Connect Flow to Energy Functional

» Let £ : P(X) — R be an energy functional with first variation %.

» The first variation of Wasserstein space analogies to the gradient of Euclidean space.

P> The Wasserstein gradient flow of E is defined by

—v

oF 1
0 :V-(V—) & =arg min F —W2(p, p;). (62
ip =V \PVais) Piro = arg min, (p)+25t 5(ps pt)-(62)
Continuity equation with v = —VI%—‘:

> Wasserstein gradient flow = Continuity equation with steepest descent velocity.

The variational formulation of the Fokker-Planck equation. SIAM Journal on Mathematical Analysis,
1998.

The design of v corresponds to the design of E.
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Imitate Transformer by Wasserstein Gradient Flow

> A typical choice of energy functional: the potential energy of particles

=5[] stempodsdy. (63)

Kernel
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Imitate Transformer by Wasserstein Gradient Flow

> A typical choice of energy functional: the potential energy of particles

=5[] stempodsdy. (63)

Kernel
» The flow v becomes

v=—-V,— = _vax("i* p)
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Imitate Transformer by Wasserstein Gradient Flow

> A typical choice of energy functional: the potential energy of particles

=5[] stempodsdy. (63)

Kernel
» The flow v becomes

v = —Vxé—E =—Vi(kxp) & ov(z)= —% /X Vak(z,y)p(y)dy. (64)
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Imitate Transformer by Wasserstein Gradient Flow

> A typical choice of energy functional: the potential energy of particles

/ /X - J/_l// z)p(y)dady. (63)

Kernel
» The flow v becomes

V=V = Valerp) & ola) = [ Vanpl)dn (64

> More specifically, when r(x, 1) = exp(xz' W y), we have

o(z) = / exp(e” W, W) WW )yp(y)dy. (65)
X ::WQT =Wk =Wy

Congratulations! Now, we have a continuous counterpart of an
unnormalized attention layer with a structured QKV setting.
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Sinkformer: From Imitation to Improvement

> Revisit the potential energy: E(p) = 3 [[1, 4 (2. y) p(z)p(y) dzdy.
——

Kernel Assumed Independency
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Sinkformer: From Imitation to Improvement

> Revisit the potential energy: E(p) = 3 [[1, 4 (2. y) p(z)p(y) dzdy.
———
Kernel Assumed Independency

» Define an entropic OT-based energy

. 1
B0 = _inf o[ “logn(e.y)nle.y)dedy - H(m)
m€ll(p,p) 2 XxX CH/I_/ ?/-/
oupling ntropy
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Sinkformer: From Imitation to Improvement

> Reuvisit the potential energy: E(p) =% [[,. 4 5l p(z)p(y)
‘V_/
Kernel Assumed Independency

» Define an entropic OT-based energy

B0 = _inf o[ “logn(e.y)nle.y)dedy - H(m)
m€ll(p,p) 2 XxX CH/I_/ E\/-/
oupling ntropy

//Xxxlogn z,y) (:Jc y)dady — H(7™)

oT plan

=5 s T

(66)
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Sinkformer: From Imitation to Improvement

> Reuvisit the potential energy: E(p) =% [[,. 4 5l p(z)p(y)  dady.
‘V_/

Kernel Assumed Independency

» Define an entropic OT-based energy

B2 = _inf 5[] logn(e.) ple.dedy - 1

rell(p,p) 2 —~
Coupling Entropy
= // —logk(z,y)m (:L“ y)dzdy — H(7™) (66)
XxX
oT plan

» Sinkhorn scaling, i.e., 7° = N.o N, o---0 N.o N, (k).

M steps, with M — oo
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Sinkformer: From Imitation to Improvement
» When applying E*°(p) and setting x(z,y) = exp(x' WW Ty), we have

v = —Vm(sgo = /X 7(x,y) (=WW Dyp(y)dy. (67)

Sinkhorn of

» Given the input of the h-th head of the I-th layer, i.e., X1 ¢ RV*D - we have
TWh) — SM(X(Z—I)TW(l,h)TW(l,h)X(l—l))(_W(l,h)TW(l,h))X(l—l)‘ (68)

Classic Attention Head Sinkformer
Q(l’ R) Doubly-Stochastic Attention Head
- ot ’”W‘X’ﬂ
(,h)
_ KGR B
xY ng(’h) Softmax xY w ) Sinkhorn
Lk ¥ (L.h) Ly X (L)

wn vV - T _emppant Y2 - T

Sinkformers: Transformers with doubly stochastic attention. AISTATS, 2022.
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Sinkformer: From Imitation to Improvement

> Notably, apply doubly-stochastic attention map is reasonable — the classic
Transformer tends to learn doubly-stochastic attention map during training.

» Sinkformer makes the tendency become a strict constraint.

Vision Fairseq Point Cloud
Transformer Transformer Transformer
0 10
£ 10 - ]
.% E 14 14
;g 1 - J 1073
- F=1 2| O =1 6 =10-70
Z T -4 16 2—5 107" W _30 110
0 50000 0 5000 0 10000
Sorted columns Sorted columns Sorted columns

Sinkformers: Transformers with doubly stochastic attention. AISTATS, 2022.
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WGFormer: Extend and Improve Sinkformer to SE(3)-Transformer

Classic SE(3) Attention Head

Sinkhorn-based Attention Head

R(U-1.0) RU-LA)
(l h) I RN
x =1
()
1) New “QKV” matrices:
QUM — KW = x-Dyyah)  yh) —

_ X =)W OWOT)"),

I RO
(&h)
Q K&

(69)
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WGFormer: Extend and Improve Sinkformer to SE(3)-Transformer

Classic SE(3) Attention Head

Sinkhorn-based Attention Head

RU-1h) RU-LA)
(l h) (1,h) (Lh)
W(l i _>®_> = Q(l h)(—> é—‘Ri
(1-1) KON (1—1) e
X (Lh) Softmax X W(l h) Sinkhorn
14 : v h
Wi vy ,® I:U Y —(WOWOT)® ven ,® 1:(”)
1) New “QKV” matrices:
QUM = gbh) — x (- h) — yh — _ x =Dy Ow TR - (69)
2) Sinkhorn-based attention map: x*(R) := N.o N, --- N, o N,(exp(R)),
RUM) = RU-1h) ¢ QUIEEINT by _ oo RUM Y (), (70)

VDa
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WGFormer: Extend and Improve Sinkformer to SE(3)-Transformer

RU-LA) Classic SE(3) Attention Head RU-1A) Sinkhorn-based Attention Head

(l h) (L,h) (1,h)
R R
W(l Jh) _,®_> Q(l h)(—> ¢—>
KON

KM x (=D

11—
xD ng’h) Softmax W(l h) Sinkhorn
¥ (1,h) ¥ (1,h)
Wi vy ,® 7 —(WOWOT)® vy ,® T

1) New “QKV” matrices:
QUM = gUh) — x =Dy h) — yoh) — _x=DpwyOwOTYR - (69)
2) Sinkhorn-based attention map: x*(R) := N.o N, --- N, o N,(exp(R)),

R — RU-Lh) % TR = oo (RER) YR, (70)

3) Concatenation:

X0 = x4 Concat({TM ), RY = Concat({RUM L ). (71) 30 106



The Motivations Behind The Key Improvements

1. Adjusting “QKV” matrices in a different manner:
> Wo =Wk = W (R Resulting in a valid kernel for interpreting attention maps.
> (WOWOT(R) = (Zﬁzl W R W GE)TY () for the h-th head: Achieving
feature-level fusion across the attention heads
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The Motivations Behind The Key Improvements

1. Adjusting “QKV” matrices in a different manner:
> Wo =Wk = W (R Resulting in a valid kernel for interpreting attention maps.
> (WOWOT(R) = (25:1 W R W GE)TY () for the h-th head: Achieving
feature-level fusion across the attention heads

2. Removing FFN module:

» The new “"QKV" matrices has fused features across different attention heads.
» Simplify the model architecture and reduce the computational cost
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The Motivations Behind The Key Improvements

1. Adjusting “QKV” matrices in a different manner:
> Wo =Wk = W (R Resulting in a valid kernel for interpreting attention maps.
> (WOWOT(R) = (Z§=1 W R W GE)TY () for the h-th head: Achieving
feature-level fusion across the attention heads

2. Removing FFN module:

» The new “"QKV" matrices has fused features across different attention heads.
» Simplify the model architecture and reduce the computational cost

3. Sinkhorn-based attention maps:

» Achieving doubly-stochastic attention maps by few iterations
» Increasing computation costs slightly, but enhancing the model interpretability (As
shown in Sinkformer)

WGFormer: An SE (3)-Transformer Driven by Wasserstein Gradient Flows for Molecular Ground-State
Conformation Prediction. ICML, 2025.
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Rationality of Sinkformer and WGFormer
> Feedforward computation = Wasserstein gradient flow minimizing the
potential energy

Particle: x5 = 2 + 6t - v(zy,t), v(zy,t) = / 7 (x4, y) (=WW Dyp(y)dy.
x

1
The distribution of particle: =arg min E(p) + —
P Pt+6t 8 ePX) (p) 251

(72)
W22(,0, Pt)-

» The exp(R) used in each layer of WGFormer can be treated as the prior of x from
the previous layer.
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Rationality of Sinkformer and WGFormer
> Feedforward computation = Wasserstein gradient flow minimizing the
potential energy

Particle: x5 = 2 + 6t - v(zy,t), v(zy,t) = / 7 (x4, y) (=WW Dyp(y)dy.
x

1
The distribution of particle: =arg min E(p) + —
P Pt+6t 8 ePX) (p) 251

(72)
W22(p7 Pt)-

» The exp(R) used in each layer of WGFormer can be treated as the prior of x from

the previous layer.
> Given N particles (i.e., X = [z1,...,zn]", p=, 0,),

E®(p) & max (D, P) —(P,logP), D=[|Wax; - Wax,|3+7i].
Pell;  ~— —~ —_———

expected distance entropy

(73)
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Rationality of Sinkformer and WGFormer

> Feedforward computation = Wasserstein gradient flow minimizing the
potential energy

Particle: x5 = 2 + 6t - v(zy,t), v(zy,t) = / 7 (x4, y) (=WW Dyp(y)dy.
x

1
The distribution of particle: =arg min E(p) + —
P Pt+6t 8 ePX) (p) 251

(72)
W22(p7 Pt)-

» The exp(R) used in each layer of WGFormer can be treated as the prior of x from
the previous layer.
> Given N particles (i.e., X = [z1,...,zn]", p=, 0,),

E®(p) & max (D, P) —(P,logP), D=[|Wax; - Wax,|3+7i].
Pell;  ~— — —_——— (73)
expected distance entropy

> Penalizing expected distance: The particles should not aggregate together
(avoid high potential energy).

» Regularizing entropy: The particles have dense interactions.
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Applications of WGFormer: Ground-State Conformation Prediction

H @»Il» - -vI‘ @ — ﬁ(
Initial RDKit 3D 3D Ground-State

A Latent Mixture Minimization of Updated Mixture Conformation
Model of Atoms Energy Function Model

Decoder

Conformation
For a molecule: initial coordinates {¢;}Y,, distances {Jij}ﬁfj:l, atom types {v;} Y.
Encoder: Minimizing potential energy defined in the latent space

2" = f(0), 7 = Ndijtie, + Vo, o), X, RE) = WGFormer,(X©), RO),

Decoder: Predicting the translation of each atom
v M Oy —g)
ci=c¢; + Zj:l N .

Supervised Learning of a model with 30-layer WGFormer.
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Applications of WGFormer: Ground-State Conformation Prediction

Validation Test

Dataset  Method Model D-MAE| D-RMSE| C-RMSD| D-MAE| D-RMSE| C-RMSD/
GINE 0.590 1.014 1.116 0.592 1.018 1.116
GATv2 0.563 0.983 1.082 0.564 0.986 1.083
2D GPS 0.528 0.909 1.036 0.529 0.911 1.038
GTMGC 0.432 0.719 0.712 0.433 0.721 0.713
Molecule3D SE(3)-Transformer  0.466 0.712 0.800 0.467 0.774 0.802
(random) EGNN 0.461 0.704 0.798 0.462 0.766 0.799
3D ConfOpt-TwoAtom  0.438 0.668 0.748 0.438 0.670 0.749
ConfOpt-ThreeAtom  0.429 0.659 0.734 0.430 0.661 0.736
WGFormer (ours)  0.391 0.649 0.662 0.392 0.652 0.664
GINE 0.883 1.517 1.407 1.400 2.224 1.960
GATv2 0.778 1.385 1.254 1.238 2.069 1.752
2D GPS 0.538 0.885 1.031 0.657 1.091 1.136
GTMGC 0.406 0.675 0.678 0.400 0.679 0.693
Molecule3D SE(3)-Transformer  0.460 0.676 0.775 0.456 0.678 0.747
(scaffold) EGNN 0.448 0.666 0.758 0.442 0.670 0.741
3D ConfOpt-TwoAtom  0.408 0.626 0.708 0.402 0.628 0.698
ConfOpt-ThreeAtom  0.401 0.619 0.697 0.395 0.622 0.691
WGFormer (ours)  0.363 0.599 0.618 0.360 0.610 0.627
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Applications of WGFormer: Ground-State Conformation Prediction
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Applications of WGFormer: Ground-State Conformation

14 T

0.89

I
[N]
L

g
o
!

o
o
|

o
o
|

Average Time (s/mol)

I
IS
L

o
N

0.0 -

142 EEA GTMGC

ZZZ1 ConfOpt-TwoAtom
EX3J ConfOpt-ThreeAtom
= WGFormer (ours)

Molecule3D
(random)

Molecule3D QM9
(scaffold)

Prediction

Both Sinkformer and WGFormer apply 3-5 Sinkhorn iterations per layer,

achieving high efficiency.
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Applications of WGFormer: Ground-State Conformation Prediction
Feedforward computation = Euler step of latent energy optimization

b
WGFormer WGFonner == WGFormer WGFormer g
(=]
Initial RDKit 3D Decoder 3D Ground-State
Conformation Conformation
—e— WGFormer (L=10) —e— WGFormer (L=30) —e— SE(3)-Trans. (L=30)
0.60
W 0.407 w 0 0.40
< v n
= 2 s
A 0.30 i 0.501 EF) 0.301
: . . ; ! " 0.20+ :
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
Time Time Time
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Applications of WGFormer: Ground-State Conformation Prediction
The proposed latent energy is highly correlated with physical energy

+-145609 -13900D

23 o o

—— Latent Energy = —— Latent Energy =

22 —— Potential Energy [~145703 —— Potential Energy |-13910=.

2 o3 5

o2l t—14580— 220 =

m m

25 5 2 t-139205

fim| F—14590D (1 o

19 3 =18 3
C C

9] -14600% g F-13930<

i FGEC =

— L [ o

17 146100 t-139402

3 El

16 r-146203 14 3

T T T T T T = T T T T T —+—13950=—

5 10 15 20 25 30 5 10 15 20 25 30
Layers Layers
# Layers 5 10 15 20 25 30 Pearson Correlation

Physical Energy (kcal/mol) -9.135 -18.199 -19.955 -34.814 -45.204 -52.378 0.885 + 0.033
Proposed Latent Energy  -3.629 -7.729 -8.512 -8.932 -9.195 -10.385 ’ )

GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical
method with multipole electrostatics and density-dependent dispersion contributions. JCTC, 2019.
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Applications of WGFormer: 3D Molecular Foundation Model

Replace the SE(3)-Transformer of Uni-Mol with WGFormer:

Training Loss

o
W
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o
N
o

o
N
o

=3
N
o

o
o
o

o
o
o

T T
—— Uni-Mol

—— WGFormer |

\

|

\\
\§
200K 400K 600K 800K M
Step
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Applications of WGFormer: 3D Molecular Foundation Model

Classification Tasks

ROC-AUC 1
Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93087
Uni-Mol (47.6M) 0.702 0.837 0.794 0.786 0.687 0.617 0.804 0.885 0.793
WGFormer (39.7M) | 0.690 0.837 0.635 0.790 0.682 0.623 0.768 0.884 0.816
Regression Tasks
RMSE | MAE |
Datasets ESOL FreeSolv Lipo | QM7 QM8 QM9
# Molecules 1128 642 4200 | 6830 21786 133885
Uni-Mol (47.6M) 0.884 1.756 0.598 | 57.00 0.015 0.005
WGFormer (39.7M) | 0.836 1.588 0.584 | 58.70 0.016 0.005

The results are achieved under default hyperparameter settings of Uni-Mol.
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Applications of WGFormer: 3D Molecular Foundation Model

Classification Tasks

ROC-AUC 1
Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93087
Uni-Mol (47.6M) 0.702 0.837 0.794 0.786 0.687 0.617 0.804 0.885 0.793
WGFormer (39.7M) | 0.690 0.837 0.928 0.790 0.682 0.623 0.768 0.884 0.816
Regression Tasks
RMSE | MAE |

Datasets ESOL FreeSolv Lipo | QM7 QM8 QM9

# Molecules 1128 642 4200 | 6830 21786 133885

Uni-Mol (47.6M) 0.884 1.756 0.598 | 57.00 0.015 0.005

WGFormer (39.7M) | 0.836  1.588 0.584 | 46.65 0.016 0.005

The results in red are achieved under non-default hyperparameter settings.

95 /146



From Euclidean Space to Graph: Two Technical Routes

1 Reuse the above auto-encoding architecture with WGFormer
» Take normalized adjacency/Laplacian matrix as initial R.
» Suitable for improving graph-oriented Transformers
» Suitable for geometric deep learning
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From Euclidean Space to Graph: Two Technical Routes

1 Reuse the above auto-encoding architecture with WGFormer
» Take normalized adjacency/Laplacian matrix as initial R.
» Suitable for improving graph-oriented Transformers
» Suitable for geometric deep learning
» However, without any acceleration, the dense computation of WGFormer is
inapplicable for large-scale graphs, like social networks.
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From Euclidean Space to Graph: Two Technical Routes

1 Reuse the above auto-encoding architecture with WGFormer
» Take normalized adjacency/Laplacian matrix as initial R.
» Suitable for improving graph-oriented Transformers
» Suitable for geometric deep learning
» However, without any acceleration, the dense computation of WGFormer is
inapplicable for large-scale graphs, like social networks.

2 Consider the topological structure and the optimal transport on graph explicitly
and efficiently
» Connect OT to classic graph theory, rather than differential equations
» Suitable for improving GNNs
» Provide a new perspective to design GNNs and their learning paradigms.
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Optimal Transport on Graph

> Given two measures defined on a graph G(V,€) i.e., po € [0,00)/VI and
p1 € [0,00)Vl, the 1-order Wasserstein distance between them is

Wi(po,p1):= min (D, P)=  min Do Ayt s 74
(Po, p1) Pen<po,p1)< ) PGH(Po,pl)vvg;Xv vee (74)

Mass transport along the shortest path

[dyyr], dyy is the shortest path from v to v’

D
P = [pyy], puw the mass transported from v to v/, along the shortest path.

>
>
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Optimal Transport on Graph

Wi (po, p1) can be equivalently computed by cost flow minimization:

Wi(po, p1) =min |[diag(a) £,

s.t. f € Q(Sy,po,p1) ={f | Svf=p1—po}

(75)
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Optimal Transport on Graph

Wi (po, p1) can be equivalently computed by cost flow minimization:
Wi (po, p1) =min [diag(a) 1,
s.t. f € Q(Sy,po.p1) ={f | Svf=p1—po}

(75)

> Sy = [sye] € {0,£1}VI¥El s the
incidence matrix of G(V,€): Mass transport flow on edges

1 If v is the head of e 'LIQ\A II
Spe =4 —1 If vis the tail of ¢ (76)
0  Otherwise I' _>

> a e Rl contains nonzero elements of adjacency matrix A.
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Optimal Transport on Graph

Wi (po, p1) can be equivalently computed by cost flow minimization:
Wi (po, p1) =min [diag(a) 1,
s.t. f € Q(Sy,po.p1) ={f | Svf=p1—po}

(75)

> Sy = [sye] € {0,£1}VI¥El s the
incidence matrix of G(V,€): Mass transport flow on edges

1 If v is the head of ¢ 'LIQ\A II
Spe =4 —1 If vis the tail of ¢ (76)
0  Otherwise I' _>
> a e Rl contains nonzero elements of adjacency matrix A.
» f e Rlis the cost flow on graph edges, ensuring the transport from pg to p;

(See the feasible domain).
» Sy f captures the mass difference on graph nodes.
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Quasi-Wasserstein (QW) Distance for Measures on Graphs

» When only partial signals on )V, are given, we have partial Wasserstein distance:
for po, p1 € RIVEL,

Wi (po, p1) = minjeqes, o0 Idiag(a) £, (77)
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Quasi-Wasserstein (QW) Distance for Measures on Graphs

» When only partial signals on )V, are given, we have partial Wasserstein distance:
for po, p1 € RIVEL,

Wfp)(POam) = minfeﬂ( ,P0,P1) |diag(a) f |1, (77)

» For partially-observed multi-dimensional signals, i.e.,
Y, = [y(()e]);L],Yl = [yﬁ; ] € RVeIXC the QW distance between them is

QW(¥o.vi) =Y wi" u,)

0, L’ 1,Ve

:Zc:l minﬂc)eﬂ(svy 2, 4@ )Hdlag( a)f (C)Hl

0,vy Y1,y
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Quasi-Wasserstein (QW) Distance for Measures on Graphs

» When only partial signals on )V, are given, we have partial Wasserstein distance:
for po, p1 € RIVEL,

Wfp)(POam) = minfeﬂ( ,P0,P1) |diag(a) f |1, (77)

» For partially-observed multi-dimensional signals, i.e.,
Y, = [y(()e]);L],Yl = [yﬁ; ] € RVeIXC the QW distance between them is

QW (Yp, Y1) : Z i y\?)

0, L’ 1,Ve
= i Fl 78
> M0 cags,, 4 g, ) IE@F L (79)

=minpeqs,, , vi,v) ldiag(a) |1,

99 /146



Quasi-Wasserstein (QW) Distance for Measures on Graphs
» When only partial signals on )V, are given, we have partial Wasserstein distance:
for po, p1 € RIVEL,

WP (po, p1) = minjeqes, p.p) Idiag(a) £, (77)

» For partially-observed multi-dimensional signals, i.e.,
Yo = [y(()c]);L],Yi [y, (C) ] e RIVLIXC the QW distance between them is

0, L’ 7VL

_ZC, mlnf(deﬂ(Svay( i) )”dlag( a)f (C)Hl (78)

0,vy Y1,y

:mlnFGQ(SVL, Yy,Y1) |diag(a) F'[|1,

» QW allows partial, unbalanced, and negative input signals.
» Given a specific graph G and V;,, QW is a valid distance metric.
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Learning GNNs via Minimizing QW Distance

» Given partially observed node labels i
Yy, , we would like to predict them by q!( / I I
a GNN, ie., Yy, =gy, (X, A;0). y

» We can learn the GNN via minimizing A 4
the QW distance: w
mil’lg QW((]VL (Xv Aa 0)7 YVL)? (79) '
~————
Y
vy, II _ /I - - —>¢‘
implici dby 7w
> Lead to an implicit - ¥ \IIK s
- . n < E
message-passing layer encoding
label transport. Quasi-Wasserstein Loss
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Advantages over Traditional Losses (CE/MSE)
> Traditional Node-Level Learning Paradigm of GNN:

maxy H p(ys| X, A;0) < ming Z Y(90(X, A;0), yo). (80)

» pis Gaussian < 1) is MSE.
> p is Sigmoid/Softmax < v is Cross Entropy (CE) loss.
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Advantages over Traditional Losses (CE/MSE)
> Traditional Node-Level Learning Paradigm of GNN:

maxy HvevL p(yy| X, A;0) < miny ZUGVL ¥(g0(X, A;0), yy). (80)

» pis Gaussian < 1) is MSE.
> p is Sigmoid/Softmax < v is Cross Entropy (CE) loss.

» What we really want to do is maximizing the joint probability of Yy, , i.e.,
maxy p(Yy, | X, A;0) (81)
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Advantages over Traditional Losses (CE/MSE)
> Traditional Node-Level Learning Paradigm of GNN:

maxy H p(ys| X, A;0) < ming Z Y(90(X, A;0), yo). (80)

» pis Gaussian < 1) is MSE.
> p is Sigmoid/Softmax < v is Cross Entropy (CE) loss.

» What we really want to do is maximizing the joint probability of Yy, , i.e
maxy p(Yy, | X, A;0) (81)

» The above two equations are equivalent iff the labels are conditional
independent, which is questionable in practice.

p(yUva) # p(yv|wvuyv’)’
(yvv yv’|mv7 $v’) = (yv|wv7 Ty, yv’)p(yv’|mva :Bv’) 7& p(yv|mv7 wv’)p(yv"mva mv’)y

p(WIX, A) # [ | p(y]X, A).
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Advantages over Traditional Losses (CE/MSE)

L Vaa™ R “wAtVaw"

l A 4 \ 4
\ 4 \ 4
L db Jab - -db
LIID I | iﬂi" ¥ \I,’ x>l
n d’ I s < I > I‘
CE/MSE Loss Quasi-Wasserstein Loss

> Relax the independency assumption, and lead to set-level prediction loss.

» In theory, the GNN minimizing QW loss fits labels better.
A Quasi-Wasserstein loss for learning graph neural networks. WWW, 2024.
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Solvers of QW Loss
» Learning GNN with the QW loss:

in QW X, A:;0),Yy, ) = mi i di Fll;. (82
min Q (gv. ( ), Yv,) melnFeQ(SvL,ggg)l(,A;@), YVL)H iag(a)F 1. (82)
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Solvers of QW Loss
» Learning GNN with the QW loss:

in QW X, A:;0),Yy, ) = mi i di Fll;. (82
min Q (9v, (X, A;0),Yy,) melnFEQ(Swg&A;a% YVL)H iag(a)F 1. (82)

> Keypoint: Apply Bregman divergence By(z,y) = ¢(z) — ¢(y) — (Vo(y),z —y).
» An inexact solver based on Bregman divergence-based relaxation:

min(‘/, F ||d|ag(a)FH1 + )\B¢(9VL (X~ A~ 9) + SVLFu YVL)' (83)
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» Learning GNN with the QW loss:

in QW X, A:;0),Yy, ) = mi i di Fll;. (82
min Q (9v, (X, A;0),Yy,) melnFEQ(Swg&A;a% YVL)H iag(a)F 1. (82)

> Keypoint: Apply Bregman divergence By(z,y) = ¢(z) — ¢(y) — (Vo(y),z —y).
» An inexact solver based on Bregman divergence-based relaxation:

min(‘/, F ||d|ag(a)FH1 + )\B¢(9VL (X~ A~ 9) + SVLFu YVL)' (83)

> An exact solver based on Bregman ADMM: An augmented Lagrangian form
with a dual variable Z

l'Ilil’l()7 F maxZ||diag(a)FH1 + <Z, gy, (X AQ) + SVLF - YVL>

(84)
+ AB¢(9VL(X? A§ 9) + SVLFa YVL)'

103 /146



Compare with Traditional Learning Paradigm

Method Setting Node Classification  Node Regression

Apply the () Cross-entropy or KL MSE
Traditional loss  Predicted y, GNN: g,(X, A:0), Vv e V\ VL
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Compare with Traditional Learning Paradigm

Method Setting Node Classification | Node Regression
Apply the Y Cross-entropy or KL MSE
Traditional loss | Predicted y, GNN: ¢,(X, A;0), Yo e V\ VL
Ent 1.2
QW loss ¢(_ v)

Predicted vy,

gu(X,A;0)+ S, F*, Yo e V\ VL
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Compare with Traditional Learning Paradigm

Method Setting Node Classification | Node Regression
Apply the () Cross-entropy or KL MSE
Traditional loss | Predicted y, GNN: g,(X, A:0), Vv e V\ VL
Ent L2
QW loss ¢(_ ¥)

Predicted vy,

gu( X, A;0)+ S, F*, Yo e V\Vy

» F™ captures the flow of labels.

> S, F* works as a nonparametric flow module captures the residue of GNN'’s

prediction.

104 /146



Amortized Flow: From Loss to Model

» We can parametrize the label

Graph with GNN-based Estimated
residue by a simple NN: Node Labels Estimation Labels
Ay =S,0(EW). (85)
——
Amortized Flow Amortized
. Edge Flow Flow-based
E € REXD s edge feature. Features Estimation

» As a result, the GNN becomes

A
r \
|
Y; (X, A; 0)+ Ay. (86) -*‘?«g 1@
y = gy(A, Aj + Ay. + ReLU Matrix
a o
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Amortized Flow: From Loss to Model

» We can parametrize the label Graph with
residue by a simple NN: Node Labels

GNN-based Estimated
Estimation Labels

Ay =Syoc(EW).  (85)

——
Amortized Flow Amortized

) Edge Flow Flow-based
E € REXD s edge feature. Features Estimation

» As a result, the GNN becomes
~ ~ -] Linear [é‘z i Incidence
Yy, = gv(X, A; 9) + Avy. (86) + ReLU Matrix

> When E is meaningful edge feature, the AF introduces additional information
enhancing the GNN.
» When FE is random noise, Ay — 0, and GNN+AF degrades to classic GNN.
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Node Classification on Homophilic Graphs

Model #Param. Cora Citeseer Pubmed Computers Photo Improve
GCN 49,802 87.44 1096 79.9810.84 86.9310.29 88.421 0.5 93.2410.43 —
GCN+F 2,508,412 87.8840.79 81.36.19.41 87.89_9.40 89.204.0.41 93.8140.36 +0.83
GCN+AF 49,822 88.19_ ¢ g5 80.611¢.56 87.841¢.25 89.58_ .29 94.17 L g.4g +0.88
GAT 399,390 89.2040.79 80.7540.78 87.421 033 90.0840.36 94.38.40.25 —
GAT+F 2,858,000 89.111 066 80.1940.64 88.38_ .23 90.414 028 94.6540.24 +0.18
GAT+AF 399,410 89.44 | (69 81.39_ .94 88.254¢.22 90.62_ .35 94.67 .30 +0.51
GIN 58,122 86.2210.95 76.1810.78 87.8710.23 80.871+1.43 89.8310.72 —
GIN+F 2,516,732 86.241 .90 76.1311.00 87.5310.34 89-28i0_45 92'60i0.44 +2.16
GIN+-AF 58,142 87.65_ .84 77.68.9.81 87.96¢.25 87.881+0.59 92.2540.33 +2.49
GraphSAGE 99,530 88.24i0_95 79-81i0.80 88.14i0_25 89.71i0_33 95-08i0.26 —_—
GraphSAGE+F 2,558,140 87.59.40.77 80.521 068 88.6140.32 90.1710.24 95.2540.25 +0.23
GraphSAGE+AF 99,550 88.34:‘:0.74 80-71j:0.70 88.78:‘:0‘16 90-60j:0.45 95'49j:0.34 +0.59
APPNP 49,802 88.3340.77 81.2840.71 88.6240.33 86.2710.37 93.7040.27 —
APPNP+F 2,508,412 88.7410.84 80.941 061 89.48.10.28 86.95.10.82 94.43 1 .24 +0.47
APPNP+AF 49,822 89.38.¢.77 82.09_¢.74 89.70¢.32 87.55_¢.59 94.50.¢.43 +1.00
BernNet 49,833 88.28i1_00 79.81i0_79 88.87i0_33 87.61i0_46 93.68i0_28 —_—
BernNet+F 2,508,443 89.03.¢.76 81.35,071 89.031033 89.58.¢.47 94.55_ (.39 +1.06
BernNet+AF 49,853 88.6040.71 81.2710.70 89.37_9.47 87.5310.45 93.804-0.41 +0.46
ChebNetll 49,813 88.26i0_89 80-0010.74 88.57i0_36 86.58i0_71 93-50i0.34 —_—
ChebNetll+F 2,508,423 88.54.10.76 79.47 1070 89.47 .36 90.43.1 022 94.84 (.37 +1.17
ChebNetlI4+-AF 49,833 88.64_ .81 79.9910.64 89.3419.40 90.46.¢.39 94.7510.43 +1.25
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Node Classification on Heterophilic Graphs

Model #Param. Squirrel  Chameleon Actor Texas Cornell Arxiv-year | Improve
GCN 134,085 | 46551115 63571116 34001128 77211308 619121511 44401016 | —
GCN+F 1,125,850 | 52.621040 68.101101 38.091050 84.101005 84.264005 44.7041030 | +7.37
GCN-+AF 134,005 |53.40 135 68.25.101 38.774070 89.51.161 87.021 005 44.721036| +9.00
GAT 1,073,679 | 48.201167 64314201 35681060 80001311 68.09:013 44211030 | —
GAT+F 2,065,444 | 55.03 1135 67.351142 33.864213 80.3341g0 70.214013 44.41.0,5 | +1.78
GAT+AF 1,073,689 | 51.47 4105 67.401127 35.94.073 80.821 063 70.64.1555 44244005 | +1.67
GIN 142,405 39111003 64291151 32374156 72794490 62551280 44.391008 | —
GIN+F 1,134,170 65'2g:|:0.68 73'26i1-12 32.32i1»g3 77-54i2.60 64-04i3,62 44'56:|:0.26 +6.92
GIN+-AF 142,415 | 50.764117 71.254745 34.431103 78.69.317 67.87 596 44511030 | +5.34
GraphSAGE 268,101 43~79i0.59 63.26i1_09 38.99i0_35 90-00i2.30 84.26i2_98 42.58i0_13 —
GraphSAGE+F 1,259,866 | 54.37 989 68.321963 37.821045 90.331197 86.381513 42.631 021 | +2.82
GraphSAGE+AF 268,111 53.09i0_73 67-05i0.94 40'02:|:0.56 90.1612'30 86.1712'93 42'74ﬂ:0.23 +2.72
APPNP 134,085 | 36.151075 52931171 40461064 O1.311197 87661013 41.05.032 | —
APPNP+F 1,125,850 | 38.731106 53.761125 40.78.07s 91.48.530 87.871034 40.981 00 | +0.67
APPNP-+AF 134,005 | 37.81115, 53.85.141 40.611074 91.48.197 86.81.277 40.991,77 | +0.33
BernNet 134,106 51~15i1.09 67.96i1_05 40-72:t0.80 93-2811.48 90-21:t2.35 41'36i0.44 —_—
BernNet+F 1,125,871 | 55.22_ g4 71.664113 40.91 071 93.44.,g8) 90.85,534 41.34.037 | +1.46
BernNet+AF 134,116 | 50511115 70.591101 41.704114 90.98 107 90.641055 41.3041030 | +0.17
ChebNetll 134,096 57-78i0_84 71-71i1.40 40-703t0.77 92.79i1.4g 88.94i2.78 48.60i0_17 —
ChebNetlI+F 1,125,861 | 60.556a 74.051065 41.37 067 93.931008 87.23436> 48.824010 | +0.91
ChebNetlI4+-AF 134,106 | 56.8110095 73.414072 41.07+106 94.10474s 89.15:{:2.77 49.06:{:0.31 +0.51
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Summary

» Most advanced neural networks can be revisited and improved through the lens of

optimal transport
» Lead to interpretable and strong models for various applications

» Scalability and efficiency are main bottlenecks.

WGFormer [ICML'25]: https://arxiv.org/abs/2410.09795
» Code: https://github.com/SDS-Lab/WGFormer

QW Loss [WWW'24, 26]: https://arxiv.org/abs/2310.11762
» Code: https://github.com/SDS-Lab/QW_Loss

OT Pooling [TPAMI'23]:
https://ieeexplore.ieee.org/abstract/document/10247589/

» Code: https://github.com/SDS-Lab/ROT-Pooling
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Thanks!
5-min Break and QA



Part 1 Computational Optimal Transport (Hongteng Xu)

» Preliminaries and basic concepts
» Typical computation methods

Part 2 Representation Learning Driven by OT (Dixin Luo)

» OT-based multi-modal learning
» Monge gap and its Gromovization for information bottleneck

Part 3 Neural Network Design Driven by OT (Minjie Cheng)
» OT-based Transformer
» OT-based graph neural network
Part 4 Recent Progress in Generative Modeling (Hongteng Xu)

» OT-based flow matching
» Applications of optimal acceleration transport
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Generative Modeling = Distribution Fitting and Matching

Px

N

>

» g: Z+— X is the generator/decoder.
» p. is the (predefined) latent distribution, and p, = g4p. is the model distribution.
» Learn g to fit data distribution p, by p,.
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Outline

1. A Quick Review of Generative Modeling Based on Static OT

> Wasserstein GAN (WGAN)
> Wasserstein Autoencoder (WAE)
» Recent Variants

2. Recent Generative Modeling Methods Based on Dynamic OT

» OT-based conditional flow matching
» Improved flow matching based on Optimal Acceleration Transport (OAT)
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Classic OT-based Generative Modeling Paradigms

Solution 1: Minimize }V; approximately in its dual-form or its SW surrogates:

>

>
>
>

WGAN: Wasserstein generative adversarial networks. ICML, 2017.
WGAN-GP: Improved training of Wasserstein GANs. NeurlPS, 2017.
Max-SWG: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.

Amortized Max-SWG Amortized projection optimization for sliced Wasserstein generative models.
NeurlPS, 2022.
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Classic OT-based Generative Modeling Paradigms

Solution 1: Minimize }V; approximately in its dual-form or its SW surrogates:

>

>
>
>

WGAN: Wasserstein generative adversarial networks. ICML, 2017.
WGAN-GP: Improved training of Wasserstein GANs. NeurlPS, 2017.
Max-SWG: Max-sliced Wasserstein distance and its use for GANs. CVPR, 2019.

Amortized Max-SWG Amortized projection optimization for sliced Wasserstein generative models.
NeurlPS, 2022.

Solution 2: Minimize WV, approximately in its primal-form:

>

>
>
>
>

v

WAE: Wasserstein Auto-Encoders. ICLR, 2018.

SinkDiff: Learning generative models with Sinkhorn divergences. AISTATS, 2018.
SWAE: Sliced Wasserstein auto-encoders. ICLR, 2018.

RAE: Learning autoencoders with relational regularization. ICML, 2020.

Conditional Transport: Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions.

NeurlPS, 2021.
HCP-AE: Hilbert curve projection distance for distribution comparison. TPAMI, 2024.
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Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017]: Fit
the model distribution p, by minimizing its 1-Wasserstein distance to the data
distribution p, in the dual-form:

Wilparpg) = il Byl — 9(2)h] = Sup Bolf(2)] ~ B/ 00D (g7)
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Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017]: Fit
the model distribution p, by minimizing its 1-Wasserstein distance to the data
distribution p, in the dual-form:

Wl(pa:’pg) = ﬂel_[i(r}g,p )E(x,g(z))fvﬂ'mx - g(z)Hl] - ;él[l? E:B[f<$)] - Ez[f(g(z))] (87)

Therefore, we have

inf Wi (ps, py) <= inf sup E.[f(z)] — E.[f(g(2))] (88)
g 9 felLy
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Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017]: Fit
the model distribution p, by minimizing its 1-Wasserstein distance to the data
distribution p, in the dual-form:

Wl(pa:’pg) = ﬂel_[i(r}g,p )E(x,g(z))fvﬂ'mx - g(z)Hl] - ;él[l? E;Jf(l’)] - Ez[f(g(z))] (87)

Therefore, we have

Inf Wi (pa, pg) <= inf sup Ee[f ()] — E:[f(9(2))] (88)
Given a set of samples X = {z,,}_, and a set of latent code Z = {z,}_,, we have
min max 2 [f (zn)] —zﬂ:[f(g(zn))] (89)
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Wasserstein Autoencoder (WAE)

Besides approximate the primal form of W, by EOT, another way is applying the
autoencoding architecture.
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> Wasserstein autoencoder (WAE) fits the model distribution p, by minimizing
its Wo distance to the data distribution p, approximately.
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Wasserstein Autoencoder (WAE)

Besides approximate the primal form of W, by EOT, another way is applying the
autoencoding architecture.

> Wasserstein autoencoder (WAE) fits the model distribution p, by minimizing
its Wo distance to the data distribution p, approximately.

qz;f
. . — L
inf Wa(pa, pg) ~ 1911]}” Ep,Eq. . [da(2, 9(2)] +vdp(Ep, (@210 p2), (90)
reconstruction loss distance(posterior, prior)

» q.|2;s is the posterior of 2 given x, parameterized by an encoder f : X' — Z.
» q..r = Ep,[q:12,¢] is the expectation of the posterior distributions.
» p, is the prior of z.

Wasserstein Auto-Encoders. ICLR 2018.
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Comparisons with Other Autoencoders

Method f:X—Z Prior p, Learn p. dp(¢z:0,Pp-)
VAE Probabilistic N(z,0,1) No KL
GMVAE Probabilistic 3 N(zug, Z)  No KL
VampPrior Probabilistic + 3L N(zQ(xr))  Yes KL
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Comparisons with Other Autoencoders

Method f:X—Z Prior p, Learn p. dp(¢z:0,Pp-)
VAE Probabilistic N(z,0,1) No KL
GMVAE Probabilistic 3 N(zug, Z)  No KL
VampPrior Probabilistic + 3L N(zQ(xr))  Yes KL
WAE Deterministic N(z;0,1) No  MMD/GAN
SWAE Deterministic N(z;0,1) No SWo
RAE Probabilistic/Deterministic + >, N'(z;ug, ) Yes FGWy
HCP-AE  |Probabilistic/Deterministic N(z;0,1) No HCP,
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A (Partial) Family Tree of OT-based Generative Models

inf W, (pz, pg)
Dual Form 9 ; Primal Form SW-based
* v Surrogate
WGAN SinkDiff / OT-GAN WAE SWG
inf sup E.[f(z . inf Ey[dx(z, 9(f(z))] .
9 fel, /(@) Hglfsup Wo(f40e, f4pg)|| 9:F * inf SW,,(pz, pg)
—E.[£(g(2))] ! + Adp(gzp2) z
Add Gradient Amortized Optimize
Penalty OT Plan Linear Proj.
WGAN-GP Conditional Transport SWAE RAE HCP Max-SWG
inf sup Eq[f(x)] — E-[f(g(2))] . dp=1ldp = ||dr = || .
9 jet inf CT (pz, py) inf MSW,,(p, pg)
B [(1V, 0 F(() = 1?] g o SWy || FGWALHCRYL g pee
Amortized
Nonlinear Proj.
Amortized Max-SWG
f OV Lo Min-Max Optimization inf
Min-Min Optimization e e 12 gSWp (pw:pg)
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The above methods are based on the static
definition of OT (i.e., Kantorovich-form OT).
The dynamic-form OT triggers more recent
generative modeling methods — flow matching.
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Flow Matching (FM) and Classical Two-Phase FM

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.

R

Sample

vg(z, t)

Flow Matching for Generative
Modeling. ICLR, 2023.

Improving and generalizing flow-based
generative models with minibatch

optimal transport. TMLR, 2024.
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Flow Matching (FM) and Classical Two-Phase FM

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.
» Conditional FM (CFM): Set py = N(0, 1), with
an auxiliary variable z ~ 7

ming E., ¢ of|[vg(z,t) — vi(z2)|], (91)

Generate new data by &1 = 2o + fol vg(ay, t)dt. In
practice, Ty1ar = Tt + At - vg(xy, ).

U&(ft, t)

Flow Matching for Generative
Modeling. ICLR, 2023.

Improving and generalizing flow-based
generative models with minibatch

optimal transport. TMLR, 2024.
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Flow Matching (FM) and Classical Two-Phase FM

U&(ft, t)

Flow Matching for Generative
Modeling. ICLR, 2023.

Improving and generalizing flow-based
generative models with minibatch
optimal transport. TMLR, 2024.

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.

» Conditional FM (CFM): Set pg = N (0, 1), with
an auxiliary variable z ~ 7

ming E., ¢ of|[vg(z,t) — vi(z2)|], (91)

Generate new data by &1 = 2o + fol vg(ay, t)dt. In
practice, Ty1ar = Tt + At - vg(xy, ).

» FM (Lipman et al.):
pe(z|z) = N (tz, (to —t +1)%), m=py
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Flow Matching (FM) and Classical Two-Phase FM

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.
» Conditional FM (CFM): Set py = N(0, 1), with
an auxiliary variable z ~ 7

ming E., ¢ of|[vg(z,t) — vi(z2)|], (91)

Generate new data by &1 = 2o + fol vg(ay, t)dt. In
practice, Ty1ar = Tt + At - vg(xy, ).
» FM (Lipman et al.):
_ 2 _
Flow Matching for Generative pt(x|z) - N(tzv (ta —t+ 1) )7 ™= p1
Modeling. ICLR, 2023. > -CFM: 2 = (1 —t) 2o+t - 21, ™= po X p1

Improving and generalizing flow-based

U&(ft, t)

generative models with minibatch

optimal transport. TMLR, 2024.
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Flow Matching (FM) and Classical Two-Phase FM

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vg(z,t) capturing the transport of
probability mass from a prior py to a data p;.

» Conditional FM (CFM): Set pg = N (0, 1), with
an auxiliary variable z ~ 7

ming E. o, o[log(e.t) - vi(el2)]”),  (91)

Generate new data by &1 = 2o + fol vg(ay, t)dt. In
practice, Ty1ar = Tt + At - vg(xy, ).
» FM (Lipman et al.):
_ 2 _
Flow Matching for Generative pt(x|z) - N(tzv (tO’ —t+ 1) )7 ™= p1
Modeling. ICLR, 2023. > -CFM: 2 = (1 —t) 2o+t - 21, ™= po X p1
[ i d lizing flow-based
MPTOVINg and generaizing Towrase » OT-CFM: Optimal Transport (OT)
perspective...

generative models with minibatch

optimal transport. TMLR, 2024.
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Flow Matching (FM) and Classical Two-Phase FM

1) Flow Matching (FM) (Sample Space): Learn a
velocity field vg(x,t) capturing the transport of probability
mass from a prior pg to a data p;.

2) Classical Two-Phase FM (Sample Space): ReFlow,
Consistency Distillation

» Pros: Few sampling steps, competitive results, ...

» Cons: Require a large number of noise data pair, the
risk of distribution drift, ...

vg(21,1)

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow. ICLR, 2023.
Consistency Models. ICML, 2023.
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OAT-FM: A Novel Two-Phase FM

Obtaining an Initial Penalizing the upper bound of
Optimal Acceleration Transport

Velocity Field

%?»‘(\Q\e

t

t=1

1=0 (2o, v0) ~ po

z 2z
3 P 3 (z1,01) ~
LY (ol t),a(vn. 1) QY

Phase 1 Phase 2
FM in the sample space OAT-FM in the product space

3) OAT-FM (Sample x Velocity Space): A novel two-phase FM based on

Optimal Acceleration Transport (OAT)

» Given a pre-trained flow-based generator vy
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OAT-FM: A Novel Two-Phase FM

Obtaining an Initial Penalizing the upper bound of
Velocity Field Optimal Acceleration Transport

%?»‘(\Q\e

t=1

1=0 (2o, v0) ~ po

2

‘_g (@1,01) ~ m
g

Velocity

\ 4

¥
(vo(wt,t), alve, 1))

Phase 1 Phase 2
FM in the sample space OAT-FM in the product space

3) OAT-FM (Sample x Velocity Space): A novel two-phase FM based on

Optimal Acceleration Transport (OAT)
» Given a pre-trained flow-based generator vy
» Minimizes the acceleration transport between po and g
121/146



OAT-FM: A Novel Two-Phase FM

Penalizing the upper bound of
Optimal Acceleration Transport

Obtaining an Initial
Velocity Field

(zo,v0) ~ o =1

y

Velocit;

(z1,01) ~ 1

y

<

¥
(vo(xe,t),a(vy, 1))

Velocity

Phase 2
OAT-FM in the product space

Phase 1
FM in the sample space

Theoretical Guarantee, Practical Computation, Efficient Training, Consistent Improvement
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OAT-FM: Optimal Acceleration Transport for Improved Flow Matching. arXiv, 2025.



The Motivations: Recall Dynamic Optimal Transport
Intuition: The "Least Effort” Principle
» The Task: Moving a pile of sand (source pg) to a target shape (target p;).
» The Goal: Find the most efficient flow that minimizes the total energy spent.

123 /146



The Motivations: Recall Dynamic Optimal Transport
Intuition: The "Least Effort” Principle

» The Task: Moving a pile of sand (source pg) to a target shape (target p;).
» The Goal: Find the most efficient flow that minimizes the total energy spent.

Dynamic Formulation (Benamou-Brenier): The Wasserstein-2 distance finds the
path of Least Kinetic Energy:

W3 (po, p1) mln/ / (z,t)||v(x,t)||3 dzdt, (92)

Kinetic Energy Density

subject to:
» O,p+ V.- (vp) =0: No mass is created or destroyed.

Conservation of Mass

» p(-,0) = po, p(-, 1) = p1: Start at noise, end at data.
A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische

Mathematik, 2000.
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The Motivations: Optimal Transport Perspective of FM
1. Conditional FM (CFM): Set py = N (0, 1), with an auxiliary variable z ~ 7

ming E,.. wUnif(0.1], zpe (1) V0 (2, ) — ve(2]2)]|°], (93)
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The Motivations: Optimal Transport Perspective of FM
1. Conditional FM (CFM): Set py = N (0, 1), with an auxiliary variable z ~ 7

ming E... twUnif(o.1], zpe (1) V0 (2, 8) — ve(2]2)]|°], (93)

2. OT-CFM: implements CFM by setting the distribution 7 in (93) as the OT plan
corresponding to W3 (po, p1) and @y = (1 —t) - @ +t - 21.
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The Motivations: Optimal Transport Perspective of FM
1. Conditional FM (CFM): Set py = N (0, 1), with an auxiliary variable z ~ 7

ming E... twUnif(o.1], zpe (1) V0 (2, 8) — ve(2]2)]|°], (93)

2. OT-CFM: implements CFM by setting the distribution 7 in (93) as the OT plan
corresponding to W3 (po, p1) and @y = (1 —t) - @ +t - 21.

Upper-level: Lcpm

mein E(xo,xl)rvw*, tNUnif[O,I][Hve(xtat) - (xl - xO)HQ]v
(94)

Lower-level: W2(pg,p1)

st. 7F = argmin E.[||z; — z0]/3],
m€ll(po,p1)

This is a Bi-level Optimization Problem.
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The Motivations: Optimal Transport Perspective of FM

(a) I-CFM, 7 = po X p1 (b) OT-CFM, 7 = «*
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The Motivations: Optimal Transport Perspective of FM

(a) I-CFM, 7 = po X p1 (b) OT-CFM, 7 = «*

The objective of OT-CFM regresses vg(z¢,t) to the constant velocity (z; — x).
However, constant velocity is sufficient but not necessary for straightening
flows.
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The Motivations: Optimal Transport Perspective of FM

Proposition 3 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the
acceleration is everywhere parallel to the velocity. The classical (first-order)
dynamical optimal transport is recovered as the special case with zero acceleration.
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The Motivations: Optimal Transport Perspective of FM

Proposition 3 (Straightness Criterion)

The trajectory is straight if and only if the velocity direction is time invariant and the
acceleration is everywhere parallel to the velocity. The classical (first-order)
dynamical optimal transport is recovered as the special case with zero acceleration.

Can we leverage the advantages of OT by minimizing
acceleration instead of velocity?
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Optimal Acceleration Transport (OAT)

Optimal Acceleration Transport: Bridges 19 and p; in the product space (X x V) by
finding a path that minimizes total squared acceleration under second-order dynamics.
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Optimal Acceleration Transport (OAT)

Optimal Acceleration Transport: Bridges 19 and p; in the product space (X x V) by
finding a path that minimizes total squared acceleration under second-order dynamics.

Definition 4 (Dynamic Formulation of Optimal Acceleration Transport 1)

Let X C R? be the sample space and V C RY the velocity space (by default V = R%).
For po, 11 € P(X x V), the optimal acceleration transport between them is defined as

A2(pi0, 1) = mln/ / L @0, 0) la(@,v, t)|2 dz dv dt, (95)
XXV 2

subject to the Vlasov equation Oy +v - Vo + V- (a ,u) = 0, with boundary
conditions y(-,-,0) = uo and p(-,-,1) = py. Here, a: X x V x [0,1] — R% is the
acceleration field, and the Vlasov equation expresses conservation of mass in the
product space.
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Optimal Acceleration Transport (OAT)

Definition 5 (Kantorovich formulation of OAT 2:34)

Given zg = (xg,v0) ~ po and z; = (x1,v1) ~ p1, the OAT problem is equivalent to
solving an optimal coupling w.r.t. squared acceleration cost, i.e.,

A% (/’Lﬂu :u’l)

- minﬂEH(uo,m) E(Zo,zl)Nﬂ' [Ci(Z07 Zl)]

T —xo U1 —|— Vo (96)

I+ o=l ],
———

Lo acceleration penalty
velocity alignment

=] minﬂ-en(uo#j,l) E(Zo,zl)"’” |:12 H

where T' > 0 denotes the time horizon between o and w3, which is 1 in our case.
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Optimal Acceleration Transport (OAT)

Joint Matching: Couples samples in X x V), aligning both position and velocity.

Theorem 6 (Straightening Flow via OAT)

Given two boundary distributions g, i1 € P(X x V), OAT admits an optimal coupling
7w € I(po, p1) for the static problem in (96). For every (xo,vg), (x1,v1) ~ 7, the
corresponding trajectory is straight iff vy and vy are collinear with z1 — xy. Otherwise,
it bends exactly to match the endpoints’ orthogonal components.
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OAT-FM: From Constant Velocity to Acceleration Control

Standard FM: Enforces vg(x,t) ~ constant velocity.
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OAT-FM: From Constant Velocity to Acceleration Control

Standard FM: Enforces vg(x,t) ~ constant velocity.

OAT-FM Motivation:
» Shift to acceleration minimization.

» Desideratum: For pre-trained vy, refine using OAT for better performance.
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OAT-FM: From Constant Velocity to Acceleration Control

Standard FM: Enforces vg(x,t) ~ constant velocity.

OAT-FM Motivation:
» Shift to acceleration minimization.

» Desideratum: For pre-trained vy, refine using OAT for better performance.

Problem Setup:
» Trajectory endpoints: 29 = (z,v0) and 21 = (z1,v1).
» Path x;: Linear interpolation zy = (1 — t)zg + tx;.
» Model state: z,(6) = (x¢, vo(4,1)).
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OAT-FM: The Objective Function

Cost Function /7 4:

Cu(z0,21,t; 0) =

Hl“t—$0 UO+U9‘
t
Velocity Alignment (0—t)
T1— X Vg +v|? 9
+a - | +1=a) o= voll
1-—-t 2 2 ———

Velocity Alignment (t—1)

L+0-a) v —wlB
———

Accel. Penalty (0—t)

(97)

Accel. Penalty (t—1)
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OAT-FM: The Objective Function

Cost Function /7 4:

H Iy —To Yo + Vo
t
Velocity Alignment (0—t)

T — Vg + v
T i I I
—_———

Ca(z0,21,1; 0) = |+ —a) [l —vol3

Accel. Penalty (0—t)

(97)

1-1¢
Velocity Alignment (t—1)

Accel. Penalty (t—1)

Key Properties:
» Hyperparameter « balances alignment vs. acceleration.

> With o = 12

13, recovers OAT cost structure: {4 = %(ci\(zg, z) + 4 (21, 21)).
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OAT-FM: The Bi-level Optimization Problem

OAT-FM Objective: We fine-tune the flow model by solving the following Bi-level
Optimization Problem:

Upper-level: Loat(po,u1; )

rneinE(zo,m)Nﬂ*, t~Unif(0,1] (€4 (20, 21, 0)],
(98)

Lower-level: A% (po,pe1)

st. 7 = argmin E(, )% (20, 21)] -
m€l(po,p1)
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OAT-FM: The Bi-level Optimization Problem

OAT-FM Objective: We fine-tune the flow model by solving the following Bi-level
Optimization Problem:

Upper-level: Loat(po,u1; )

mginE(zO,zl)w*, t~Unif(0,1] (€4 (20, 21, 0)],
(98)

Lower-level: A2 (p0,p1)

st. 7 = argmin E(, )% (20, 21)] -
m€l(po,p1)

> Lower-level: Finds the optimal coupling 7* that minimizes total acceleration in
the product space.

> Upper-level: Aligns the learned flow with the OAT geodesics via £ 4.

> Parameter o: Balances directional alignment and acceleration minimization.
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OAT-FM vs. OT-CFM

Component OT-CFM OAT-FM (Proposed)

Space Sample Space X Product Space X x V
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OAT-FM vs. OT-CFM

Component OT-CFM OAT-FM (Proposed)
Space Sample Space X Product Space X x V
Dynamics Continuity Equation Vlasov Equation

Op+ V- (vp) =0 Ot + Vo - (vp) + Vo - (ap) =0
Lower-level Optimal Transport (OT) Optimal Acceleration Transport (OAT)
(Coupling) 7 = argminE[||z; — 0/?] 7 = argmin E[c? (20, 21)]
Upper-level Velocity Matching Acceleration Matching Proxy
(Objective) min ||vg — (21 — z0)||? min £ 4(zo, 21,;6)
Mechanism Constant Velocity Minimized Acceleration

(Straightening)

min [ [[v]?dt = #=0

min [ [la;]?dt = & =0
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OAT Bound of OAT-FM

Theorem 7 (OAT Bound of OAT-FM)

The OAT-FM objective Loat(po, p1; @) is lower-bounded by a scaled version of the
true OAT second-order discrepancy, i.e.,

2
Loat(po, p1; o) > 5«43(#0, p), (99)

with o = 2/3, and the equality held if and only if vy = vy for m*-almost every pair.
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Efficient Implementation via Decomposable Structure

The Challenge: Solving OAT requires coupling in a 4D product space:
(20, 21) € H(po, ).

135 /146



Efficient Implementation via Decomposable Structure

The Challenge: Solving OAT requires coupling in a 4D product space:
(20, 21) € W(po, p11).

The Simplification (Decomposition): In FM, velocities are deterministic given
samples: v = vg(x,t). This implies a decomposable structure for the coupling:

m(20,21) = Te(20,21) * Juy(20,0)(V0) * Ouy(ar,1) (V1) - (100)

Sample Coupling Deterministic Velocity Assignment
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Efficient Implementation via Decomposable Structure

The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT
problem on samples:

arg min E(zg,xl)Nw;,, [12”1’1 — T — Vzgy ||2 + ||1~)x0,xl H%} ) (101)
W:I:EH(907P1)

where pg, p1 are marginals on X, and velocities are fixed by the current model:
> Upow = 5(vo(20,0) + vg(z1,1)) (Mean Velocity)
» Upyar = vo(z1,1) — vg(x0,0) (Velocity Difference)
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Efficient Implementation via Decomposable Structure

The Resulting Lower-Level Problem: We reduce the OAT problem to a classic OT
problem on samples:

arg min E(zo,zl)Nw;,, [12”1’1 — T — Vzgy ||2 + ||1~)x0,x1 H%} ) (101)
W:I:GH(907P1)
where pg, p1 are marginals on X, and velocities are fixed by the current model:
> Upow = 5(vo(20,0) + vg(z1,1)) (Mean Velocity)
» Upyar = vo(z1,1) — vg(x0,0) (Velocity Difference)

Computational Complexity Analysis:
» Exact OT (Linear Program): O(B?1og | C||)-
» Sinkhorn Algorithm (Approximation): O(B?log B).
> Solved efficiently via iterative matrix scaling (highly parallelizable).
> Recovers exact OT solution when € — 0.
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Algorithm Scheme: OAT-FM Training Loop

Algorithm 1 OAT-FM Training Procedure

Require: Pre-trained model vy,, Dataset D, Batch size B, EMA rate A.

Ensure: Refined velocity field vg.
1: Initialize vo < vy, .
2: while training do

3: // Step 1: Data Preparation
4: Sample batch {z1,;}72, ~ D, {z0,i}721 ~N(0,1), t ~ U0, 1].
5: Estimate boundary velocities using current model:
{vo,i = vo(0,i,0) i1, {vii = wvoler,i, I
6: // Step 2: Lower-Level (Coupling)
7 Compute optimal coupling T* by solving the reduced classic OT.
8: Sample pairs (z1,z0) ~ T to get aligned batches.
9: // Step 3: Upper-Level (Optimization)
10: Interpolate z; < (1 — t)xo + tx1, predict vi < vo(xe,t).
11: Compute Loat and update: 0’ < 0 — Vo LoaT.
12: Update EMA: 6 < stopgrad(\d + (1 — \)¢’).
13: end while
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Application 1: Low-dimensional OT Benchmark

20000 Batches (I-CFM) +1000 Batches (OAT-FM) +5000 Batches (OAT-FM) +20000 Batches (OAT-FM)

Experimental Setup:
» Tasks: 5 standard 2D distribution mapping tasks (e.g., 8gaussians — moons).
» Evaluation Metric: 2-Wasserstein distance and Normalized Path Energy (NPE):

_ 2 1
NPE(’U@) _ |PE(U0) WZ (ﬂo,ﬂl)” with PE(UQ) _ Eazo/ ||’U9(."L't,t)||2dt.
0

W%(Po, p1)
(102)
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Application 1: Low-dimensional OT Benchmark

Task N —8gs 8gs—moons N —moons N —scurve moons—8gs
Method ~ W2l NPEL W2 NPE, WZ?| NPEL W2, NPE, W:?| NPE|
FM 0.5810.16 0.2440.01 5.80+£0.06 0.05+0.02 0.151007 0.27+0.05 0.81+0.30 0.0810.04 7.391+045 0.96+0.05
+OAT-FM 0.31.40,09 0.0210.01 0.08.£0.03 0.0110,01 0.081003 0.03:0.01 0.90+0.18 0.0310.02 0.28:0.10 0.04.10.02
I-CFM 0.45:018 0.3040.01 0.1840.05 1401005 0.11:003 0.5240.06 1.16+047 0.031003 0.7410.12 1.1940.06
+OAT-FM 0.324010 0.041001 0.15:003 0.1310.01 0.0710.02 0.04:004 1.121045 0.031002 0.50011 0.441003
VP-CFM  0.4340.14 0.241001 0.151002 1.241005 0.10+0.03 0.31+0.07 1.051041 0.22:0.04 1.394035 1.2210.05
+OAT-FM 0.3140.12 0.0340.01 0.0940.01 0.0210,01 0.071002 0.04:0.01 1.104034 0.031002 0.321010 0.1040.02
+OAT-FM 0.34.0,08 0.03+0.01 0.07£0.01 0.0110,01 0.09:0.04 0.100.04 0.80+0.18 0.0210.02 0.25:0.08 0.0310.02

0.8710.33 0.0310.03
0.831034 0.0410.02

0.29.0.09 0.10+0.02
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Application 2: Unconditional Image Generation (CIFAR-10)

Method #Batch NFE| FIDJ
FM 400K 147 3.71
FM + OAT-FM +1K 135 3.54
I-CFM 400K 149 3.67
I-CFM + OAT-FM +1K 138 3.48
OT-CFM 400K 132 3.64
OT-CFM + OAT-FM +1K 126 3.46
DDPM* 1K 3.17
Score SDE* 2K 2.38
LSGM* 147 2.10
2-ReFlow++* 35 2.30
EDM 35 1.96
EDM + OAT-FM +12K 35 1.93

FID(!)

Lower-level Upper-level Phase-1 Method
Problem Problem FM EDM
Without Phase-2 Training | 3.71 1.96
W2 in (94) Lcpm in (94) |3.75 8.77
W2 in (94) Loar in (101) | 3.55 8.68
A2 in (101) Lcgm in (94) |3.81 1.95
A2 in (101) Loar in (101)|3.54  1.93

FID-100 Results

L -8 Euler 100 Steps 0.0470

h o068
0.0466
0.0464

0.0462

u
/
Straightness ( ! )

LN 0.0460

0.0458
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Training Samples (K)

A

Straightness

—A: Straightness

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Training Samples (K)
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Application 3: Large-scale Conditional Image Generation

(a) SIT-XL (Left) v.s. + OAT-FM (Right)

(c) SIT-XL (Left) v.s. + OAT-FM (Right) (d) SIT-XL (Left) v.s. + OAT-FM (Right)
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Application 3: Large-scale Conditional Image Generation

Method #Epochs FID] sFID] ISt P RT
BigGAN-deep 6.95 736 1714 0.87 0.28
StyleGAN-XL 230 4.02 2651 0.78 0.53
Mask-GIT 6.18 - 182.1 - -

ADM-G/U 394 6.14 2158 0.83 0.53
CDM 4.88 - 158.7 - -

RIN 3.42 - 182.0 - -

Simple Diffusiony.viT, L 2.77 - 211.8 - -

VDM++ 2.12 - 267.7 - -

DiT-XLcrg=15 227 460 2782 0.83 0.57
SiT-XLcrg=15, Sampler=ODE 1,400 2.11 4.62 256.0 0.81 0.61
SiT—XLCFG:1.5’ Sampler=ODE + OAT-FM +5 2.05 4.62 259.4 0.80 0.61
SiT-XLcpg=25, Sampler=ODE 1,400 691 6.42 3915 0.89 0.47
SiT-XLcrg=2.5, Sampler—=oDE + OAT-FM +5 6.57 5.98 394.8 0.89 0.49
SiT-XLcrg=15, Sampler=SDE 1,400 2.05 450 2696 0.82 0.59
SiT-XLcrg=1.5, Sampler=sDE + OAT-FM +5 2.00 4.43 275.1 0.82 0.59
SiT-XLcrg=25, Sampler=SDE 1,400 7.75 6.64 405.0 0.90 0.45
SiT-XLcrg=25, Sampler=SDE + OAT-FM +5 7.44 5.77 409.9 0.90 0.46
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Application 3: Large-scale Conditional Image Generation

—&— + OAT-FM

sFID

11+

101

—o— SiT-XL
—#— + OAT-FM

10 1
a ¥
—
[
6.
4.
2.
1 2 3
CFG Scale

1 2 3

CFG Scale
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Summary

v

OT-CFM shows the potential dynamic OT in generative modeling.

Proposes OAT-FM to straighten flow trajectories by minimizing acceleration in
the joint sample-velocity space

Introduces an efficient two-phase fine-tuning paradigm that improves pre-trained
models without distribution drift

Achieves superior generation quality on high-dimensional tasks (e.g., CIFAR-10,
ImageNet) with minimal training overhead

Paper: https://arxiv.org/pdf/2509.24936
Code: https://github.com/AngxiaoYue/0AT-FM
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https://github.com/AngxiaoYue/OAT-FM

Acknowledgment
Computational Optimal Transport

5

4

4
I3
Xiangfeng Wang Cheng Meng Jun Yu Angi Dong Tao Li Mengyu Li Moyi Yang
RUC BIT KTH RUC RUC ECNU

OT-based Machine Learning

£ ‘ g
)

Lawrence Carin Hongyuan Zha Angxiao Yue Fanmeng Wang Jiachang Liu Fengjiao Gong Yuzhou Nie
Duke CUHK-SZ RUC RUC Cornell RUC ucsB

145 / 146



Thank you!

https://hongtengxu.github.io
https://github.com/HongtengXu
hongtengxu@ruc.edu.cn

AAAI'22 Tutorial on Gromov-Wasserstein Learning
[JCAI'23 Tutorial on OT-based Machine Learning
AAAI'26 Tutorial on OT-based Machine Learning
https://hongtengxu.github.io/talks.html
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